Numerical simulation of jet streams in objects of space rocket engineering

1Timoshenko, VI, 2Belotserkovets, IS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 1999, 5 ;(1):78–89
https://doi.org/10.15407/knit1999.01.078
Publication Language: Russian
Abstract: 
The problems of numerical simulation of different jet streams in space rocket engineering objects and their elements are considered. The capabilities of the computing programs and computational techniques developed at the Institute of Technical Mechanics of the N.A.S. of Ukraine are discussed. The following aspects of jet streams problems are described: interaction of subsonic and supersonic jet streams with supersonic and subsonic boundless flows, with streams in pipes or channels, including jet streams in the launcher container and around the fuel pylons of a hypersonic flight vehicle with supersonic burning combustion chamber; the computation of single and composite supersonic jets in rocket propulsion systems and their interaction with surfaces; estimation of parameters in asymmetrical separating zones behind the bottom of a rocket with a working jet.
Keywords: hypersonic flight vehicle, numerical simulation, rocket propulsion systems
References: 
1. Belotserkovets I. S. Raschet sverhzvukovyh sostavnyh zatoplennyh struj ideal'nogo gaza, vzaimodejstvujushhih s poverhnost'ju. Tekhicheskaya Mekhanika, Is. 8, 15—18 (1998) [in Russian].
2. Belotserkovets I. S., Timoshenko V. I. Calculating the boundaries of a supersonic nonviscous jet entering a submerged space or a companion supersonic flow. Journal of Engineering Physics, 40 (2), 197—203 (1981) [In Russian].
3. Belotserkovets I. S., Timoshenko V. I. Vlijanie tverdoj fazy i teplofizicheskih harakteristik central'noj odinochnoj sverhzvukovoj strui dvigatelja na donnoe davlenie i temperaturu. Kosmicheskie Issledovaniia na Ukraine, Is. 16, 55—58 (1982) [In Russian].
4. Belotserkovets I. S., Timoshenko V. I. Computation of base flow characteristics with uniform blowing. Journal of Applied Mechanics and Technical Physics, 25 (1), 76—81 (1982) [In Russian].
5. Belotserkovets I. S., Timoshenko V. I. Calculation of the diffusion combustion of a subsonic jet in a co-current supersonic flow. Journal of Applied Mechanics and Technical Physics, 29 (1), 91—95 (1988) [In Russian].
6. Belotserkovets I. S., Timoshenko V. I. Effect of wave processes on the viscous-nonviscous interaction of a sub- and supersonic jet with a super- and subsonic secondary flow in a channel and in a tube. Journal of Applied Mechanics and Technical Physics, 31 (4), 112—117 (1990) [In Russian].
7. Belotserkovets I. S., Timoshenko V. I. Calculation of the irregular interaction of shock waves. Journal of Applied Mechanics and Technical Physics, 33 (6), 9—14 (1992) [In Russian].
8. Belotserkovets I. S., Timoshenko V. I. Interaction between a shock wave and a jet draining into a supersonic cocurrent flow with lesser supersonic velocity. Journal of Applied Mechanics and Technical Physics, 34 (5), 10—15 (1993) [In Russian].
9. Belotserkovets I. S., Timoshenko V. I.
Istechenie zaglublennoj sverhzvukovoj strui v trubu ili kanal. Tekhicheskaya Mekhanika, Is. 4, 90—93 (1995) [in Russian].
10. Belotserkovets I. S., Timoshenko V. I., Filippovskaia L. M. Effect of the nonuniformity of external supersonic flow and nozzle deflection angle on the base pressure behind an axisymmetric body with a single supersonic jet. Izv. VUZov. Aviatsionnaia Tekhnika, No. 1, 34—36 (1990) [In Russian].
11. Belotserkovets I. S., Timoshenko V. I., Shekhovtsova V. A. A complex of programs to compute two-dimensional plane and axisymmetric supersonic flows. Inform. bull.   VINITI: Algoritmy i programmy, No. 11, GFAP No. 50870000642, RFAP AN USSR No. AP0140 ot 31.02.86 (Moscow, 1987)  [in Russian].
12. Bondarev E. N., Lisichko I. D. Effect of viscosity on the flow of an unexpanded jet propagating in a supersonic wake-type flow. Izv. AN SSSR. Ser. Mekhanika zhidkosti i gaza, No. 2, 157—161 (1973) [In Russian].
13. Bondarev E. N., Lisichko I. D. Propagation of an underexpanded turbulent jet in a parallel supersonic flow. Izv. AN SSSR. Ser. Mekhanika zhidkosti i gaza, No. 4, 36—41 (1974) [In Russian].
14. Borisov N. F. Numerical calculation of nonisobaric supersonic viscous jets issuing into co-current supersonic flows, Uch. Zap. TsAGI, 16 (1), 15—26 (1985) [In Russian].
15. Galinsky V. P., Kushnir G. G., Timoshenko V. I. O chislennom issledovanii obtekanija ostryh konusov sverhzvukovoj struej. Prikladnaya mekhanika, 17 (10), 133—136 (1981) [In Russian].
16. Godunov S. K., Zabrodin A. V., Ivanov M. Ia., et al. Numerical solution of multidimensional problems of gas dynamics, 400 p. (Nauka, Moscow, 1976) [in Russian].
17. Ivanov M. Ya., Kireev V. N. Calculation of highly underexpanded supersonic free jets. Computational Mathematics and Mathematical Physics, 16 (5), 750—757 (1976) [In Russian].
18. Pogorelov V. I., Shcherbanina G. B. Discharge of a supersonic jet from a nozzle with an inclined rim. Izv. AN SSSR. Ser. Mekhanika zhidkosti i gaza, No. 4, 107—110 (1977) [In Russian].
19. Timoshenko V. I. Supersonic Flows of Viscous Gas, 184 p. (Naukova Dumka, Kiev, 1987) [in Russian].
20. Mac-Cormack R. W. The effect of viscosity in hypervelocity mpact cratering. AIAA Paper, N 354, P. 8 (1969).

21. Nash J. F. An analysis of two-dimensional turbulent base flow, including the effect of the approaching boundary layer. Aeronaut. Res. Council. Repts and Mem., N 3344 (1963).