Approximate models of plume flows from electric propulsion engines of spacecraft

1Shuvalov, VA, 2Levkovich, OA, 3Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
3Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(5):105–109
https://doi.org/10.15407/knit1998.05.105
Publication Language: Russian
Abstract: 
Approximate models of plume flows from thrusters are formulated. The model, distributions of gasdynamic parameters are adequate to numerical simulations by the method of characteristics and the results of physical experiments.
Keywords: electric propulsion engines of spacecraft, space energy
References: 
1. Avduevskii V. S., Ashratov E. A., Ivanov A. V., Pirumov U. G. Supersonic nonisobaric gas jets, 248 p. (Mashinostroenie, Moscow, 1985) [in Russian].
2. Averenkova G. I., Ashratov E. A., Volokonskaya T. G., et al. Supersonic Jets of an Ideal Gas: in 2 parts, 714 p. (Izd. Mosk. Univ., Moscow, 1970—1971) [in Russian]
3. Antokhin V. M., Balashov Y. P., Gerasimov Y. I., et al. Research on the model of flow "Apollo" spacecraft. MZhG, No. 3, 124—133 (1977) [in Russian].
4. Askhabov S. N., Burgasov M. P., Veselovzorov A. N., et al. Study on the jet of the stationary plasma accelerator with closed electron drift. Fizika Plazmy, 7 (1), 225—230 (1981) [in Russian].
5. Kuluva N. M., Hosack G. A. Supersonic nozzle discharge coefficients at low Reynolds numbers. Raketnaja tehnika i kosmonavtika, 9 (9), 267—270 (1971) [in Russian].
6. Kushida R., Hermel J., Apfel S., and Zydowicz M. The characteristics of the nozzle with high expansion ratio for the thruster. Ajerokosmicheskaja tehnika, No.2, 42—48 (1988) [in Russian].
7. Lukianov G. A. Supersonic plasma jets, 264 p. (Mashinostroenie, Leningrad, 1985) [In Russian].
8. Massier P. F., Back L. H., Noel M. B., Saheli F. Viscous effects on the flow coefficient for a supersonic nozzle. Raketnaja tehnika i kosmonavtika, 8 (3), 268—270 (1970) [in Russian].
9. Meier E., Hermel J., and Rodgers A. V. Loss of thrust due to the interaction of the exhaust jet with constructional elements of an orbital ying vehicle. Aerokosm. Tekh., No. 8, 118—126 (1987) [in Russian].
10. Milligan M. W. Nozzle characteristics in the transition regime between continuum and free molecular flow. Raketnaja tehnika i kosmonavtika, 2 (6), 146—152 (1964) [in Russian].
11. Ray V. Some results of the numerical calculations of viscous rarefied gas flows in nozzles in a narrow channel approximation. Raketnaja tehnika i kosmonavtika, No. 5, 52—62 (1971) [in Russian].
12. Roze D. Investigation of viscous flow in supersonic nozzles with an electron beam. Raketnaja tehnika i kosmonavtika, No. 5, 43—51 (1971) [in Russian].
13. Roberts L., South J. C. Comments on exhaust flow field and surface impingement. Raketnaja tehnika i kosmonavtika, 2 (2), 238—240 (1964) [in Russian].
14. Stasenko A. L. Criteria for determination of the "boundary" of a solid flow in a free expanding jet. Journal of Engineering Physics, 16 (1), 9—14 (1969) [in Russian].
https://doi.org/10.1007/BF00835349
15. Emmons H. W. Fundamentals of gas dynamics, 702 p. (Izd-vo inostr. lit-ry, Moscow, 1964) [in Russian].

16. Dettleff G., Doetcher R.-D., Dankert C., et al. Attitude control thruster plume flow modelling and experiments. J. Spacecraft and Rockets, 23 (5), 477—481 (1986).
https://doi.org/10.2514/3.25832