Methods for the identification of magnetosphere regions based on spacecraft data: experimental criteriaand empirical modelling

1Verkhoglyadova, OP, 1Ivchenko, VM
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(5):18–27
Publication Language: Ukrainian
Problems arising in the analysis of spacecraft measurements made in the Earth's magnetosphere are discussed. Data processing should take into account the properties of plasma regions where the measurements were made. We give an overview of the most widely used experimental criteria, empirical models, and the features assumed to be characteristic of the magnetosphere regions. Preliminary scheme of the data analysis from the viewpoint of space physics is sketched. The study was made in the framework of the Interball-Tail data processing.
Keywords: Earth's magnetosphere, Interball-Tail, spacecraft measurements
1. Evdokimov V. P., Pokras V. M. Methods of data reduction in scientific cosmic experiments, 176 p. (Nauka, Moscow, 1977) [in Russian].
2. Ostapenko  A. A., Mal'tsev Yu. P., Mal'kov M. V. Magnetic field model in the internal Earth magnetosphere. Geomagnetizm i Aehronomiya, 36 (5), 35—42 (1996) [in Russian].
3. Akasofu S.-I. The magnetospheric currents: an introduction. In: Magnetospheric currents, Ed. by T. A. Potemra, P. 29. (Geophys. Monogr. Ser., 28) (Washington, 1984).
4. Angelopoulos V., Mitchell D. G., Willams D. J., et al. Growth and evolution of a plasmoid associated with a small, isolated substorm: IMP-8 and GEOTAIL measurements in the magnetotail. Geophys. Res. Lett., 22 (22), 3011 (1995).
5. Bame S. J., Smith E. J., Ogilvie E., et al. Plasma regimes in the deep geomagnetic tail: ISEE 3. Geophys. Res. Lett., 10 (9), 912 (1983).
6. Behannon K. W. Geometry of the geomagnetic tail. J. Geophys. Res., 75, 743 (1970).
7. Christon S. P., Eastman T. E., Doke T., et al. Magnetospheric plasma regimes identified using Geotail measurements. 2. Statistics, spatial distribution, and geomagnetic dependence. J. Geophys. Res., 103, (A10), 23521—23542 (1998).
8. Christon S. P., Gloeckler G., Eastman T. E., et al. Average energetic ion flux variation associated with geomagnetic activity from EPIC/STICS on GEOTAIL. J. Geophys. Res., 98A (12), 21421 (1993).
9. Cowley S. W. H., Hynds R. J., Richardson J. G., et al. Energetic ion regimes in the deep geomagnetic tail: ISEE 3. Geophys. Res. Lett., 11 (3), 275 (1984).
10. Crooker N. U., Siscoe G. L., Russell C. T., Smith E. J. Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary  magnetic  field  measurements. J. Geophys. Res., 87A (4), 2224—2230 (1982).
11. Eastman T. E., Christon S. P., Doke T., et al. Magnetospheric plasma regimes identified using Geotail measurements. 1. Regime identification and distant tail variability. J. Geophys. Res., 103 (A10), 23503—23520 (1998).
12. Eastman T. E., Roelof E. C., Criston S. P., et al. Energetic proton flux anisotropy in the Earth's magneto tail. 2: Geotail EPIC observations. J. Geophys. Res. (1997).
13. Elphinstone R. D., Hearn D., Murphree J. S., Cogger L. L. Mapping using the Tsyganenko long magnetospheric model and its relationship to Viking auroral images. J. Geophys. Res., 96A (4), 1467 (1991).
14. Fairfield D. H. Average and unusual location of the Earth's magnetopause and bow shock. J. Geophys. Res., 76 (28), 6700—6716 (1971).
15. Fairfield D. H. On the structure of the distant magnetotail: ISEE 3. J. Geophys. Res., 97A (2), 1403 (1992).
16. Fairfield D. H. Solar wind control of the distant magnetotail: ISEE 3. J. Geophys. Res., 98A (12), 21265 (1993).
17. Fairfield D. H., Acuna M. H., Zanetti L. J., Potemra T. A. The magnetic field of the equatorial magnetotail: AMPTE/CCE observations at R < 8.8 Re. J. Geophys. Res., 92, 7432 (1987).
18. Farris M. H., Petrinec S. M., Russell C. T. The thickness of the magnetosheath: constraints on the polytropic index. Geophys. Res. Lett., 18 (10), 1821 (1991).
19. Feldstein Y. I. and Elphinstone R. D. Aurorae and the large-scale structure of the magnetosphere. J. Geomagn. and Geoelec., 44, 1159 (1992).
20. Feldstein Ya. I., Galperin Yu. I. The auroral luminosity structure in the high-latitude upper atmosphere: its dynamics and relationship to the large-scale structure of the Earth's magnetosphere. Rev. Geophys., 23 (3), 217 (1985).
21. Gosling J. T., McComas D. J., Thomsen M. F., et al. The warped neutral sheet in the near-Earth geomagnetic tail. J. Geophys. Res., 91, 7093 (1986).
22. Heikkila W. J. Magnetospheric topology of fields and currents. In: Magnetospheric currents, Ed. by T. A. Potemra, P. 208 (Geophys. Monogr. Ser., 28) (Washington, 1984).
23. Jordan S. E. Empirical models of the magnetospheric magnetic field. Rev. Geophys., 32 (2), 139—157 (1994).
24. Kaufmann R. L., Larson D. J., Beidl P., Lu C. Mapping and energization in the magnetotail. 1. Magnetospheric boundaries. J. Geophys. Res., 98 (A6), 9307 (1993).
25. Lopez R. E. The position of the magnetotail neutral sheet in the near-Earth region. Geophys. Res. Lett., 17 (10), 1617 (1990).
26. Moses and Owen. Plasma tail twisting and bending. Third International Conference on Substorms (ICS-3), Versailles, France, 12—17 May 1996 (1996).
27. Peredo M., Stern D. P. On the position of the near-Earth neutral sheet: a comparison of magnetic model predictions with empirical formulas. J. Geophys. Res., 96, All., 19521 (1991).
28. Petrinec S. M., Russell C. T. An empirical model of the size and shape of the near-Earth magnetotail. Geophys. Res. Lett., 20 (23), 2695 (1993).
29. Pulkkinen T. I., Baker D. N., Walker R. J., et al. Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents. Geophys. Res. Lett., 22, 675 (1995).
30. Roelof E. C., Sibeck D. G. Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res., 98A (12), 21421 (1993).
31. Sibeck D. G., Lopez R. E., Roelof E. C. Solar wind control of the magnetopause shape, location and motion. J. Geophys. Res., 96A (4), 5489—5495 (1991).
32. Sibeck D. G., Siscoe G. L., Slavin J. A., et al. The distant magnetotail's response to a strong interplanetary magnetic field By: twisting, flattening and field line bending. J. Geophys. Res., 90A (5), 4011 (1985).
33. Stasiewicz K. Polar cusp topology and position as a function of interplanetary magnetic field and magnetic activity: Comparison of a model with "Viking" and other observations. J. Geophys. Res., 96, 15789—15800 (1991).
34. Stern D. P. The art of mapping the magnetosphere. J. Geophys. Res., 99, 17169 (1994).
35. Tsurutani B. T., Slavin J. A., Smith E. J., et al. Magnetic structure of the distant geotail from -60 to -220 Re: ISEE-3. Geophys. Res. Lett., 11 (1), P. 1 (1984).
36. Tsyganenko N. A. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res., 100A (4), 5599—5612 (1995).
37. Tsyganenko N. A., Stern D. P. A new-generation global magnetosphere field model, based on spacecraft magnetometer data. ISTP Newsletter, 6 (1), 21 (1996).
38. Yamamoto T., Shiokawa K., Kokubun S. Magnetic field structures of the magnetotail as observed by GEOTAIL. Geophys. Res. Lett., 21 (25), 2875 (1994).
39. Zhang X. X., Song P., Stahara S. S., et al. Large scale structures in the magnetosheath: exogenous or endogenous in origin. Geophys. Res. Lett., 23 (1), 105 (1996).
40. Zwickl R. D., Bakers D. N., Bame S. J., et al. Evolution of the Earth's distant magnetotail: ISEE 3 electron plasma results. J. Geophys. Res., 89A (12), 11007 (1984).

41. Zwolakowska D., Popielawska B. Tail plasma domains and the auroral oval — results of mapping based on the Tsyganenko 1989 magnetosphere model. J. Geomagn. and Geoelec., 44, 1145 (1992).