The current state of the art in the use of the lasers in space communication, laser ranging and remote sensing

1Yatskiv, DYa.
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(4):118–131
https://doi.org/10.15407/knit1998.04.118
Section: Space Navigation and Communications
Publication Language: Ukrainian
Abstract: 
The general description of the state of the art m the development of space communication, laser ranging, and remote sensing is given. The methods, set-up, and general parameters of the main devices and experiments are reviewed and discussed. The paper Is based on the review of periodicals.
Keywords: laser ranging, space communication, Space Navigation
References: 
1. Georgiev N. I. Utilization of the Optical Observations of Artificial Earth Satellites for the Purpose of Geodesy, 43-56 (BAS, Sofia, 1979) [In Russian].
2. Zvelto O. Laser Physics, 287-288, 265-270 (Mir, Moscow, 1979) [In Russian].
3. Zuev V. E., Balin Yu. S.,  Tikhomirov A. A., et al. Remote laser sensing of the Earth from space. I. The Russian spaceborne BALKAN lidar. Kosm. nauka tehnol., 3 (1-2), 16-25 (1997) [in Russian].
https://doi.org/10.15407/knit1997.01.016
4. Kozanne A., Flere Zh., Metr G., Russo M. Optics and Communication, 502 p. (Mir,  Moscow, 1984) [In Russian].
5. Hinckley E. D., Zuev V. E. Laser Control of the Atmosphere, 412 p. (Mir, Moscow, 1979) [in Russian].
6. Yariv A. Introduction to Optical Electronics, 396 p. (Vyssh. shk., Moscow, 1983) [In Russian].
7. Cole T. D. Near Earth Asteroid Rendezvous. Laser Focus World, Sept., 77-86 (1996).
8. Crockett S. K. NASA / Langley Research Center, Mechanical design of a lidar system for space applications LITE. Laser Radar V: Proc. SPIE, 1222, 164-177 (1990).
https://doi.org/10.1117/12.18382
9. DeMeis R. Laser secures troop communications. Laser Focus World, Sept., P. 32 (1996).
10. DeMeis R. Mobile laboratory supports IR Lidar development. Laser Focus World, Sept., P. 31 (1996).
11. Free-Space Laser Communication Technologies IX. Proc SPIE, 2990, 150-160 (1997).
12. Garifo L. Optical systems monitor atmospheric pollutants. Laser Focus World, April, 95-105 (1997).
13. Laser Communication Program Overviews «Free-Space Laser Communication Technologies II». Proc. SPIE, 1218, 2-27 (1990).
14. Laser Radar V. Proc. SPIE, 1222, 204 p. (1990).
15. Lidar Techniques for Remote Sensing III. Proc. SPIE, 2956, 238 p. (1995).
16. Matvienko G. G., Zuev V. E., Shamanaev V. S., et al. Lidar BALKAN-2 for space platform ALMAZ-1B. Proc. SPIE, 2310, 161-163 (1994).
https://doi.org/10.1117/12.195859
17. Mortensen P. Airborne fluosensor may find   underwater treasure. Laser Focus World, Sept., P. 48 (1996).
18. Paul D. K. Mass, prime power, and volume estimates for reliable optical intersatellite link payloads. Proc. SPIE «Free-Space Laser Communication Technologies II», 1218, 40-50 (1990).
https://doi.org/10.1117/12.18172
19. Pearlman M. Report of SLR/LLR Subcomission of CSTG, Maratea, Italy, June 1997.
20. Pearson G. N., Rye B. J., Hardesty R. M. Design of a high pulse repetition rate CO2 Doppler lidar for atmosheric monitoring. Laser Radar V, Proc. SPIE, 1222, 142-153 (1990).
https://doi.org/10.1117/12.18380
21. Satellite Laser Ranging in the 1990s. NASA Conf. Publ., 3283, Belmont Workshop (1994).
22. Sugimoto N., Saito Ya., Aoki T., et al. Laser  transmitter/receiver system for earth —satellite —earth long-path absorption measurements of atmospheric trace species using the retroreflector in space. Optical Engineering, 36 (12), 3235-3241 (1997).
https://doi.org/10.1117/1.601595
23. Winker D. M., McCormick M. P. Observation of aerosol and clouds with LITE. Proc. SPIE, 2581, 70-78 (1995).
https://doi.org/10.1117/12.228522