Molecular no emission at λ= 5.3 μm in the upper atmosphere as a possible earthquake precursor

1Fedorenko, AK, 2Ivchenko, VN
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(1):09-16
https://doi.org/10.15407/knit1998.01.009
Publication Language: Ukrainian
Abstract: 
We discuss the possibility of using NO emission (λ= 5.3 μM) as a seismic activity indicator. The energy of electric fields and geoactive particles in the upper atmosphere can be effectively converted into the IR radiation energy through the vibrational excitation of the N2 molecules with the subsequent transmission of the vibrational energy to NO. The nitric oxide molecule can play the role of a stabilizer of neutrals' temperature during ionospheric disturbances. So, the NO fundamental band emission is a sensitive indicator of various disturbances of the ionosphere.
Keywords: band emission, earthquake precursor, ionosphere
References: 
1.  Akmamedov Kh. Interferometric temperature measurements in the F2 ionospheric layer during the June 20, 1990 earthquake in Iran. Geomagnetizm i Aeronomiia, 33 (1), 163—165 (1993) [in Russian].
2.  Akmamedov Kh., Pertsev N. N., Romanova N. N., et al. Possible Mechanism of Temperature Rise in the F 2 Region of the Ionosphere during the Iranian Earthquake of June 20, 1990.  Geomagnetizm i Aeronomiia, 36 (2), 119—123 (1996) [in Russian].
3.  Aleshina M. E., Voronov S. A., Galper A. M., et al. On the Relationship Between the Locations of Earthquakes Centers and High-energy Particles Precipitation Areas Under the Radiation Belt. Kosmich. issledovanija, 30 (1), 79—83 (1992) [in Russian].
4.  Bilichenko S. V., Ingin A. S., Kim Je. F., et al. VLF ionospheric response to the processes of earthquake preparation. Akademiia Nauk SSSR, Doklady, 311 (5), 1077—1081 (1990) [in Russian].
5.  Vlasov M. N., Mishin E. V., Telegin V. A. Mechanism of formation of high nitric oxide concentrations in the polar ionosphere. Geomagnetizm i Aeronomiia, 20 (1), 57—61 (1980) [in Russian].
6. Voitov G. I., Dobrovol’skii I. P. Chemical and Isotopic-Carbon Instabilities of Natural Gas Flows in Seismically Active Regions. Izv. AN SSSR. Fizika Zemli, No. 3, 20—31 (1994) [in Russian].
7.  Voronov S. A., Galper A. M., Kirillov-Ugryumov V. G. Register increase streams of high-energy particles in the region of the Brazilian magnetic anomaly September 10, 1985: Preprint MIFI/006-88, Moscow Engineering Physics Institute, 48 p. (MIFI, Moscow, 1988) [in Russian].
8.  Gal'per A. M., Dmitrenko V. V., Nikitina N. V., et al. On the possibility of earthquake prediction to change the high-energy charged particle fluxes in the near-Earth space: Preprint MIFI No. 069-88, Moscow Engineering Physics Institute, 16 p. (MIFI, Moscow, 1988) [in Russian].
9.  Gal'per A. M., Dmitrenko V. V., Nikitina N. V., et al. Relationship between fluxes of high-energy charged particles in the radiation belt and the earth's seismicity. Kosmicheskie Issledovaniia, 27 (5), 789—792 (1989) [In Russian].
10.  Ginzburg E. A., Malyshev A. B., Proshkina I. P., Pustovetov V. P.  Correlation between large earthquakes and particle flux variations in radiation belt. Geomagnetizm i aeronomia, 34 (3), 60—66 (1994) [In Russian].
11.  Gordiets B. F. Vibrational relaxation of anharmonic N2 molecules and the nitric oxide concentration in the perturbed thermosphere.   Geomagnetizm i Aeronomiia, 17 (5), 871—878 (1977) [In Russian].
12.  Gordiets B. F., Markov M. N. Infrared radiation in the energy balance of the upper atmosphere. Kosmicheskie Issledovaniia, 15 (5), 725—735 (1977) [In Russian].
13.  Gordiets B. F., Markov M. N. IR emission and NO concentration in the case of the significant heating of the upper atmosphere. Geomagnetizm i Aeronomiia, 23 (3), 446—450 (1983) [In Russian].
14. Gordiets B. F., Markov M. N., Shelepin L. A. Theory of infrared radiation from near-earth space. In: Infrared radiation in the earth's atmosphere and in space. (Trudy Lebedev Physical Institute, AN  SSSR, Vol. 105), 7—71 (Nauka, Moscow, 1978) [In Russian].
15.  Gornyi V. I., Sal'man A. G., Tronin A. A., Shilin B. V. Outgoing infrared radiation of the earth as an indicator of seismic activity. Akademiia Nauk SSSR, Doklady, 301 (1), 67—69 (1988) [In Russian].
16.  Gokhberg M. B., Gershenzon N. I., Gufeld I. L., et al. Possible effects of electric fields of seismic origin on the ionosphere. Geomagnetizm i Aeronomiia, 24 (2), 217—222 (1984) [In Russian].
17.  Gokhberg M. B., Gufeld I. L. Sources of electromagnetic earthquake precursors. Akademiia Nauk SSSR, Doklady, 250 (2), 323 (1980) [in Russian].
18.  Danilov A. D., Vlasov M. N. Photochemistry of Ionized and Excited Particles in the Lower Ionosphere [Fotokhimiya ionizirovannykh i vozbuzhdennykh chastits v nizhnei ionosfere], 200 p. (Gidrometeoizdat, Leningrad, 1973) [In Russian].
19.  Kim V. P., Khegai V. V., Illich-Svitych P. V. On one possible ionospheric precursor of earthquakes. Izv. AN SSSR. Fizika Zemli, No. 3, 37—40 (1994) [in Russian].
20.  Kondrat'ev K. Ya., Moskalenko N. I. The greenhouse effect of the atmosphere and climate, 212 p. (Gidrometeoizdat, Leningrad, 1984) [In Russian].
21.  Kotsarenko N. Ya., Korepanov V. E., Ivchenko V. N.  Investigations of the ionospheric precursors of earthquakes project "Poperedzhennya". Kosm. nauka tehnol., 1 (1), 96—99 (1995) [in Ukrainian].
https://doi.org/10.15407/knit1995.01.096
22.  Liperovsky V.A., Pokhotelov O.A., and Shalimov S.L. Ionospheric precursors of earthquakes, 305 p. (Nauka, Moscow, 1992) [in Russian].
23.  Pertsev N. N., Shalimov S. L. The generation of atmospheric gravity waves in a seismically active region and their effect on the ionosphere. Geomagnetizm i Aeronomiia, 36 (2), 111— 118 (1996) [In Russian].
24.  Pustovetov V. P., Malyshev A. B. Space-time correlation of earthquakes and variation of high energy particle flux in the inner radiation belt. Kosmicheskie Issledovaniia, 31 (5), 84 —90 (1993) [In Russian].
25.  Sal'man A. G., Tronin A. A. Space Thermal Sensing - a new method of distance learning seismically active regions.  Sov. geologija, No. 10, 90—93 (1989) [In Russian].
26.  Toroshelidze T. I. On perturbations in the Earth's upper atmosphere, preceding earthquakes. Soob. AN GrSSR, 126 (1), 77—80 (1987) [In Russian].
27.  Fedorenko A. K., Ivchenko V. M. Infrared molecular emission in limb sounding investigation of the upper Earth atmosphere: a review. Kosm. nauka tehnol., 2 (5-6), 89—96 (1996) [in Ukrainian].
https://doi.org/10.15407/knit1996.05.089
28.  Chmyrev V. M., Isaev N. V., Bilichenko S. V., et al. Electric fields and hydromagnetic waves in the ionosphere above an earthquake center. Geomagnetizm i Aeronomiia, 26 (6), 1020—1022 (1986) [In Russian].
29.  Adler-Golden S. M., Mattew M. W., Smith D. R. Upper atmospheric infrared radiance from CO2 and NO: observed during the SPIRIT 1 rocket experiment. J. Geophys. Res., 96A (7), 11319—11329 (1991).
https://doi.org/10.1029/91JA00656
30.  Ahmadjian M., Nadile R. M., Wise J. O., Bartschi B. CIRRIS-1A space shuttle experiment. J. Spacecraft and rockets, 27 (6), P. 669 (1990).
https://doi.org/10.2514/3.26197
31.  Barth C. A., Tobiska D. E., Siskind D. E., Cleary D. D. Solar-terrestrial coupling: low-latitude thermospheric nitric oxide. Geophys. Res. Lett., N 15, 92—94 (1988).
32.  Caledonia G. E., Green B. D., Nadile R. M. The analysis of SPIRE  measurements of atmospheric limb CO2(v2) fluorescence. J. Geophys. Res., 90A (10), 9783— 9788 (1985).
https://doi.org/10.1029/JA090iA10p09783
33.  Fraser-Smith A. C., Bernard A., McGill P. R. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieto earthquake. Geophys. Res. Lett., 17 (9), 1465—1468 (1990).
https://doi.org/10.1029/GL017i009p01465
34.  Fuller-Rowell T. J. Modeling the Solar cycle change in nitric oxide in the thermosphere and upper mesosphere. J. Geophys. Res., 98A (2), 1559—1570 (1993).
https://doi.org/10.1029/92JA02201
35.  Hedin A. E. MSIS-86 thermospheric model. J. Geophys. Res., 92, 4649—4662 (1987).
https://doi.org/10.1029/JA092iA05p04649
36.  Sharma R. D., Sun Y., Dalgarno A. Highly rotationally excited nitric oxide in the terrestrial thermosphere. Geophys. Res. Lett., 20 (19), 2043—2045 (1993).
https://doi.org/10.1029/93GL02486
37.  Siskind D. E., Barth C. A., Cleary D. D. The possible effect of solar soft X rays on thermospheric nitric oxide. J. Geophys. Res., 95, 4311—4317 (1990).
https://doi.org/10.1029/JA095iA04p04311
38.  Siskind D. E., Rusch D. W. Nitric oxide in the middle to upper thermosphere. J. Geophys. Res., 97A (3), 3209—3217 (1992).
https://doi.org/10.1029/91JA02657
39.  Stair A. T., Pritchard J., Coleman J., et al. Rocketborne cryogenic (10K) high resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra. Appl. Optics, 27 (7), 1056—1069 (1983).
https://doi.org/10.1364/AO.22.001056
40. Stair A. T., Sharma R. D., Nadile R. H., et al. Observation of limb radiance with cryogenic spectral infrared rocket experiment. J. Geophys. Res., 90A (10), 9763—9775 (1985).
https://doi.org/10.1029/JA090iA10p09763