Tethered satellite systems: Review of the problem

1Alpatov, AP, 2Dranovsky, VI, 3Zakrzhevskii, AE, 4Pirozhenko, AV, 2Khoroshylov, VS
1Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
3S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
Kosm. nauka tehnol. 1997, 3 ;(3):021–029
https://doi.org/10.15407/knit1997.05.021
Publication Language: Russian
Abstract: 
Problems arising in the dynamics of tethered satellite systems are discussed. The problems and the modes of attacking them are classified. We analyze physical models, methods for building mathe­matical models, as well as possible modes of motion of tethered satellite systems.
Keywords: spacecraft tethered systems
References: 
Alekseev N. I. Statics and Steady Motion of a Flexible String [Statika i ustanovivsheesja dvizhenie gibkoj niti], 270 p. (Legkaja industrija, Moscow, 1970) [in Russian].
Alpatov A. P., Belonozhko P. A., Pirozhenko A. V., Shabokhin V. A. Evolution of the rotational motion of two tethered bodies in orbit. Kosmicheskie Issledovaniia, 28, is. 5, 692—701 (1990) [in Russian].
Beletskii V. V. Essays on the motion of bodies in space, 2nd rev. and enlarg. ed., 430 p. (Nauka, Moscow, 1977) [in Russian].
Beletskii V. V., Levin E. M. Dynamics of tethered space systems, 336 p. (Nauka, Moscow, 1990) [in Russian].
Zaslavsky G. M., Sagdeev R. Z. Introduction to nonlinear physics: From pendulum to turbulence and chaos, 368 p. (Nauka, Moscow, 1988) [in Russian].
Merkin D. R. Introduction to the mechanics of flexible strands, 240 p. (Nauka, Moscow, 1980) [in Russian].
Pirozhenko A. V. Control of the motion of two tethered bodies in a gravitational field by varying the tether length. Kosmicheskie Issledovaniia, 30 (4), 473—482 (1992) [in Russian].
Pirozhenko A. V. First approximation calculation for systems with essentially nonlinear oscillatory members. Prikladnaya Matematika i Mekhanika, 57 (2), 50—56 (1993) [in Russian].
Saltanov N. V. Flexible strands in the flows, 220 p. (Nauk. dumka, Kiev, 1974) [in Russian].
Tsander F. A. Flights to other planets (Article Two). In: The pioneers of rocket technology, 263—270 (Moscow, 1964) [in Russian].
Tsiolkovsky K. E. Free space: Collected works [Svobodnoe prostranstvo: Sobr. soch.], Vol. 2, 25—68 (Izd-vo AN SSSR, Moscow, 1954) [in Russian].
Tsiolkovsky K. E. Investigation of Outer Space Rocket Appliances: Collected works  [Issledovanie mirovyh prostranstv reaktivnymi priborami: Sobr. soch.], Vol. 2 (Izd-vo AN SSSR, Moscow, 1954) [in Russian].
Shhedrov V. S. Fundamentals of mechanics of flexible strands, 252 p. (Mashgiz, Moscow, 1961) [in Russian].
Bekey I. Tethers open new space options. Astronaut, and Aeronaut., 21 (4), 32—40 (1983).
Bekey I., Penzo P. A. Tether propulsion. Aerospace America, 24 (7), 40—43 (1986).
Breakwell J. V., Gearhant J. W. Pumping a tethered configuration to boost its orbit around an oblate planet. J. Astronaut. Sci., 35 (1), 19—40 (1987).
Burgess L. L., Kustas F. M., Jarossy F. J. A space tether experiment (STEX). Fourth International Conference on Tethers in Space.  (Washington, 10—14 April, 1995).
Cantafio L. J., Chobotov V. A., Wolfe M. G. Photovoltaic, gravitationally stabilized, solid-state satellite solar power station. J. Energy, 1 (6), 352—363 (1977).
https://doi.org/10.2514/3.62346
Chobotov V. A. Gravitationally stabilized satellite solar power station in orbit. J. Spacecraft and Rockets, 14 (4), 249—251 (1977).
https://doi.org/10.2514/3.27966
Clease J. R. The dynamics of tethers in artificial gravity applications. International Conference on Tethers in Space. (Venice, Italy, 4—8 October, 1987).
Clease J. R. A comparison of SEDS-2 flight and dynamics simulation results. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).
Colombo G., Bergamasohi S., Bevilaoqua F. The Italian participation to the tethered satellite system. Acta Astronaut., 8 (6-7), 353—358 (1982).
https://doi.org/10.1016/0094-5765(82)90062-5
Cosmo M. L., Lorenzini E. C., Gullahorn G. E. Acceleration levels and dynamics noise on SEDS end-mass. Fourth International Conference on Tethers in Space, (Washington, 10—14 April, 1995).
Crist S. A., Eisley J. G. Cable motion of a spinning spring-mass system. J. Spacecraft and Rockets, 7 (11), 1352—1357 (1970).
https://doi.org/10.2514/3.30169
Crossi M. D. Future of tethers in space. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).
Herbiniere S. Restitution of tethered satellites systems motion. Fourth International Conference on Tethers in Space, (Washington, 10—14 April, 1995).
Jablonski A. M., Vegnerjn F. R., Stalg D. A., Tyc G. Tether laboratory demonstration system (TE-LAB) a ground test facility for the OEDIPUS tether missing. Fourth International Conf. on Tethers in Space. (Washington, 10—14 April, 1995).
James H. G., Tyc G. Flight result from the OEDIPUS — A tethered experiment. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).
Kroll K. R. Tethered propellant resupply technique for space stations. Acta Astronaut., 12 (12), 987—994 (1985).
https://doi.org/10.1016/0094-5765(85)90027-X
Lang D. D., Nolting R. R. Operations with tethered space vehicles. Gemini Summary Conference, February 1—2, 1967, Houston, Texas, NASA SP-138, 55—66 (1967).
Liangdon L., Bainum P. M. Effect of tether flexibility on tethered Shuttle subsatellity and control. 2-nd International Conference on Tethers in Space. (Venice, Italy, 4—8 October, 1987).
Lorenzini E. C. Acselaration levels the space station and a tether elevator for micro and variable — gravity applications. 2-nd International Conf. on Tethers in Space. (Venice, Italy. 4—8 October, 1987).
Lorenzini E. C., Mowery D. K., Rupp C. C. SEDS-II deployment control law and mission design. Fourth International Conf. on Tethers in Space. (Washington, 10—14 April, 1995).
Misra A. K. Dynamics of N-body tethered satellite system. 3-rd International Conf. on Tethers in Space. (S. Francisco, California, May 1989).
Misra A. K., Modi V. J., Tyc G., et al. Dynamics of low-tension spinning  tethers. Fourth International Conf. on Tethers in Space. (Washington, 10—14 April, 1995).
Misra A. K., Xu D. M., Modi V. J. On vibrations of orbiting tethers. Acta Astronautical, 13 (10), 587—597 (1986).
https://doi.org/10.1016/0094-5765(86)90049-4
Napolitano L. G., Belivaoqua F. Tethered constellations, their utilization as microgravity platforms and relevant features. 35-th Internal. Astronautical Congr., Lausanne, Switzerland, October 7—13, 1984, paper No. 84—439 (1984).
Paul B. Planar librations of an extensible dumbbell satellite. AIAA J, 1 (2), 411—418 (1963).
https://doi.org/10.2514/3.1547
Pearson J. Anchored lunar satellites for cislunar transportation and communication. J. Astronaut. Sci., 17 (1), 39— 62 (1979).
Raitt W. J. Sounding rocket tethered payload experiments: NASA charge program. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).
Steiner W., Steindl A., Troger H. Dynamics of a space satellite system with two rigid endbodies. Fourth International Conf. on Tethers in Space. (Washington, 10—14 April, 1995).
Thompson W. B., Sten M. O. A Skyhook from Phobos to Mars. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).

Wallace B. K. SEDS tether deployment ground  test. Fourth International Conference on Tethers in Space. (Washington, 10—14 April, 1995).