Prognosis of iron and titanium distributions on the lunar surface for comparison with the «Lunar Prospector» data

1Shkuratov, Yu.G, 2Kaydash, VG, 3Opanasenko, NV, 3Stankevich, DG, 4Parusimov, VG
1Institute of Astronomy of V. N. Karazin Kharkiv National University, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Institute of Astronomy of V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
3Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
4Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 1997, 3 ;(2):59–70
https://doi.org/10.15407/knit1997.03.059
Section: Space Astronomy
Publication Language: Russian
Abstract: 
Lunar nearside maps of iron and titanium distributions were made up. The purpose of this mapping is to compare its results with the data of geochemical survey which is planned in the «Lunar Prospec­tor» mission. The maps are made from optical measurements in four spectral bands: /U 0.42, 0.65, 0.75, 0.95 цт. То calibrate the maps, the chemical content data for «Apollo», «Luna», «Surveyor» landing sites were used. A model of light scattering was used to go from optical characteristics of scattering medium to substance parameters. The maps are presented in the right orthographic projection. Histograms of the parameters studied were calculated. In particular, the iron distribution is bimodal with maxima at 6 % and 17 %. The iron—titanium correlation diagram was built; analysis of this diagram made with the use of additional landing site data shows that the majority of landing sites belong to nontypical combinations of iron and titanium abundances. The map of typical FeO and TiO2 content combinations was made up. According to this map, basalts of Mare Tranquillitatis with high titanium content and low iron concentration are not typical for the Moon nearside.
Keywords: Lunar Prospector, lunar surface, Moon
References: 
Akimov L. A. Disk brightness distribution of the moon and planets. Astron. Zhurnal, 56, 412—418 (1979) [in Russian].
Bogatikov O. A., Gon'shakova V. I., Frih-Har D. I. Classification of lunar igneous rocks, 72 p. (Nedra, Moscow, 1985) [in Russian].
Wood J. A. Overview of types of lunar rocks and comparison of lunar and earth's crust. In: Vinogradov A. P. (Ed.) Cosmochemistry Moon and planets, 29—45 (Nauka, Moscow, 1975) [in Russian].
Evsjukov N. N. A connection of optical characteristics with the chemical and mineralogical composition of the lunar rocks.  Astron. zhurn., 51, 1316—1325 (1974) [in Russian].
Evsjukov N. N., Shestopalov D. I. On mineral composition of lunar soils. Astron. Vestn., 12 (1), 18— 26 (1978) [in Russian].
King E. A. Space geology [Kosmicheskaja geologija], 379 p. (Mir, Moscow, 1979) [in Russian].
Kislyuk V. S., Shkuratov Yu. G., Yatskiv Ya. S. Exploration of the Moon from space: tasks, potentialities, and prospects of the Ukrainian science and engineering. Kosm. nauka tehnol., 2 (1-2), 3—14 (1996) [in Ukrainian].
https://doi.org/10.15407/knit1996.01.003
Mason B., Melson W. G. The lunar rocks. [Lunnye porody], 165 p. (Mir, Moscow, 1973) [in Russian].
Nava D. F., Philpotts J. A. A model for differentiation of the moon in the light of new data on the chemical composition of regolith returned by Luna 20. In: Barsukov V. L. (Ed.) Regolith from the highland region of the moon, 337—344 (Nauka, Moscow, 1979) [in Russian].
Nemoshkalenko V. V.  Investigation of the lunar regolith. Kosm. nauka tehnol., 2 (1-2), 16—23 (1996) [in Ukrainian].
https://doi.org/10.15407/knit1996.01.016
Opanasenko N. V., Shkuratov Yu. G., Stankevich D. G., Kaidash V. G. Colorimetric Mapping of the Visible Hemisphere of the Moon.  Astron. vestn., 30 (5), 398—408 (1996) [in Russian].
Parusimov V. G. Automatic Digital Two-Coordinate Microphotometer for Input of Photographic Images Into Computer. Astrometriia i Astrofizika, Is. 45, 86—99 (1981) [in Russian].
Rozenberg G. V. Reviews of Topical Problems: Physical Basis of the Spectroscopy of Light-Scattering Substances. Uspehi fizich. nauk, 91 (4), 569—608 (1967) [in Russian].
Starukhina L. V., Shkuratov Yu. G. A Model for the Spectral Dependence of Albedo for Multicomponent Regolith-Like Surfaces. Astron. vestn., 30 (4), 299— 306 (1996) [in Russian].
Phinney W. C., Warner J. L., Simonds C. H. Types of lunar continental rocks and their relation to the impact of fractionation processes. In: Vinogradov A. P. (Ed.) Cosmochemistry Moon and planets, 54—88 (Nauka, Moscow, 1975) [in Russian].
Florenskii K. P., Bazilevskii A. T., Burba G. A., et al. Sketches on comparative planetology, 328 p. (Nauka, Moscow, 1981) [in Russian].
Shkuratov Iu. G. Model of the spectral albedo of the solid surfaces of cosmic bodies. Kinematika i Fizika Nebesnykh Tel, 3 (5), 39—46 (1987) [in Russian].
Shkuratov Iu. G. Intepretation of the colorimetic characteristics of the lunar surface on the basis of a spectral albedo model for powder surfaces. Kinematika i Fizika Nebesnykh Tel, 4 (2), 17—21 (1988) [in Russian].
Shkuratov Yu.G., Kaydash V.G., Opanasenko N.V., et al. A possibility of prognosticating the lunar surface composition prediction from optical measurement data. Kosm. nauka tehnol., 2 (5-6), 78—88 (1996) [in Russian].
https://doi.org/10.15407/knit1996.05.078
Belton M. J., Head J. W., Pieters C. M., et al. Lunar impact basins and crustal heterogeneity: new western limb and far side data from Galileo. Science, 255, 570—576 (1992).
https://doi.org/10.1126/science.255.5044.570
Blewett D. T., Lucey P. G., Hawke B. R., et al. Clementine images of the lunar sample-return station: improvements to the TiO2 mapping technique. Lunar and Planet. Sci. 28th (Abstracts), P. 119 (LPI Houston, 1997).
Blewett D. T., Lucey P. G., Hawke B. R., et al. FeO mapping of the Moon: refinement using images of the sample-return stations. Lunar and Planet. Sci. 28th (Abstracts), P. 121 (LPI Houston, 1997).
Boyce J., Jonson D. Age of flow units in the lunar nearside maria based on Lunar Orbiter V photographs. Proc. Lunar Planet. Conf. 9th, 3275—3284 (LPI Houston, 1978).
Charette M., McCord T. B., Pieters C., et al. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79, 1605—1613 (1974).
https://doi.org/10.1029/JB079i011p01605
Fischer E., Pieters C. Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: normalizing the optical effect of space weathering. J. Geophys. Res., 101E (1), 2225—2234 (1996).
https://doi.org/10.1029/95JE02983
Johnson T. V., Soderblom L. A. Relative spectra (0.4—1.1 µ) of the lunar landing site Apollo 7. J. Geophys. Res., 74 (25), 6046—6056 (1969).
https://doi.org/10.1029/JB074i025p06046
Johnson T. V., Saunders S., Matson D., Mosher J. A TiO2 abundance map for northern maria. Proc Lunar Sci. Conf. 8th, 1029—1036 (LPI Houston, 1977).
Johnson J. R., Larson S. M., Singer R. B. Remote sensing of potential lunar resourses. I. Near-side composition properties. J. Geophys. Res., 96E (3), 18861 — 18882 (1991).
https://doi.org/10.1029/91JE02045
Lucey P., Taylor G., Malaret E. Abundance and distribution of iron on the Moon. Science, 268, 1150—1153 (1995).
https://doi.org/10.1126/science.268.5214.1150
Lucey P., Blewett D., Johnson J. Lunar titanium content from UV-VIS measurements. Lunar and Planet. Sci. Conf. 27th (abstracts), P. 781 (LPI Houston, 1996).
Lucey P., Blewett D. Some issues related to lunar FeO and TiO2 multispectral mapping. Lunar and Planet. Sci. Conf. 28th (abstracts),  P. 841 (LPI Houston, 1997).
Lucey P., Taylor G., Malaret E. Global abundance of FeO on the Moon: improved estimates from multispectral imaging and com­parisons with the lunar meteorites. Lunar and Planet. Sci. Conf. 28th (abstracts), P. 849 (LPI Houston, 1997).
Morris R. Surface exposure indices of lunar soils: A comparative FMR study. Proc. Lunar Planet. Sci. Conf. 7th, 315—335 (LPI Houston, 1976).
Morris R. V. The surface exposure (marturity) of lunar soils: Some concepts and Is/FeO compilation. Proc. Lunar Sci. Conf. 9th, 2287—2297 (LPI Houston, 1978).
Nozette S., Pleasance L. P., Horan D. M., et al. The Clementine mission to the Moon: science overview. Science, 266, 1835—1862 (1994).
https://doi.org/10.1126/science.266.5192.1835
Opanasenko N. V., Shkuratov Yu. G., Kaydash V. G. Estimations of iron content in lunar regolith by measurements of spectral slope in 0.95 µm absorption band. Abstr. of papers subm. to 24th Russian-American microsymp. on planet, October 1996, 70—71 (Vernadsky Inst., Moscow, 1996).
Pieters C., McCord T. Characterization of lunar mare basalt types. Proc. Lunar Sci. Conf. 7th, 2677—2690 (LPI Houston, 1976).
Pieters C. A summary of spectral reflectance data. Proc. Lunar Sci. Conf. 9th, 2825—2849 (LPI Houston, 1978).
Ryder J., McEwen H. G., Marvin U. B. Basalts from Mare Crisium. The Moon, 17, 263—287 (1977).
https://doi.org/10.1007/BF00562200
Shkuratov Yu.G., Opanasenko N. V., Kreslavsky M. A. Polarimetric and photometric properties of the Moon: telescope observation and laboratory simulation. 1. Negative polarization. Icarus, 95, 282—299 (1992).
https://doi.org/10.1016/0019-1035(92)90044-8
Shkuratov Yu. G., Opanasenko N. V. Polarimetric and photometric properties of the Moon: telescope observation and laboratory simulation. 2. Positive polarization. Icarus, 99, 468—484 (1992).
https://doi.org/10.1016/0019-1035(92)90161-Y
Shkuratov Yu. G., Opanasenko N. V., Stankevich D. G. Lunar soil maturity determination on the base of spectra slope measure­ments in 0.95 mm band. Abstr. of papers subm. to 24th Russian-American microsymp. on planet, October 1996, 86—87 (Vernadsky Inst., Moscow, 1996).

Taylor S. Lunar science: Post Apollo Era, 370 p. (N. Y., 1972).