Infrared molecular emission in limb sounding investigation of the upper Earth atmosphere: a review

1Fedorenko, AK, 2Ivchenko, VM
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 1996, 2 ;(3):89–96
https://doi.org/10.15407/knit1996.05.089
Section: Space and Atmospheric Physics
Publication Language: Ukrainian
Abstract: 
Results obtained during a number of space experiments on the Earth limb observations in IR have been analyzed and summarized. For the primary molecular emission bands the changes of intensity due to variations in ionosphere conditions (night-lime or sun-lighting conditions, auroral activity) and for different heights are. discussed. An urgent demand for studying the results of infrared emission spectrum of the ionosphere has arisen during the project «Warning» preparation. The aim of the project is a careful study of ionospheric disturbances due to seismic activity including investigation of ionospheric emissions in the optical and infrared range.
Keywords: Earth atmosphere, molecular emission
References: 
Beiser A. Perspectives of Modern Physics [Osnovnye predstavlenija sovremennoj fiziki], 485 p. (Atomizdat, Moscow, 1973) [in Russian].
Kotsarenko N. Ya., Korepanov V. E., Ivchenko V. N. Investigations of the ionospheric precursors of earthquakes project "Poperedzhennya". Kosm. nauka tehnol., 1 (1), 96—99 (1995) [in Ukrainian].
https://doi.org/10.15407/knit1995.01.096
Liperovsky V.A., Pokhotelov O.A., and Shalimov S.L. Ionospheric precursors of earthquakes, 305 p. (Nauka, Moscow, 1992) [in Russian].
Mishin E. V., Ruzhin Iu. Ia.,Telegin V. A. The interaction between electron fluxes and ionospheric plasma, 264 p. (Gidrometeoizdat, Leningrad, 1989)  [in Russian].
Morozhenko O.V., Sosonkin M.G., Shavrina A.V., Ivanov Yu.S. Problems in the remote monitoring of global variations in the Earth atmosphere gas components. Kosm. nauka tehnol., 1 (2-6), 3—17 (1995) [in Ukrainian].
https://doi.org/10.15407/knit1995.02.003
Ruzhin Yu. Ya., Oraevsky V. N., Depueva A. Kh. Seismoionospheric precursors [Sejsmoionosfernye predvestniki]: Preprint RAN No. 92(1039), 47 p. (Moscow, 1993) [in Russian].
Sochnev V. G., Tulinov V. F. An investigation of the flux of infrared radiation in the upper atmosphere by the 28th Meteor satellite. In: Investigation of the upper atmosphere from space. (Tr. GosNICIPR, Is. II), 52—62 (Gidrometeoizdat, Leningrad, 1980) [in Russian].
Adler-Golden S. M., Mattew M. W., and Smith D. R. Upper atmospheric infrared radiance from CO2 and NO: observed during the SPIRIT 1 rocket experiment. J. Geophys. Res., 96A (7), 11319—11329 (1991).
https://doi.org/10.1029/91JA00656
Adler-Golden S. M., Gruninger J., and Smith D. R. Derivation of atmospheric atomic oxygen and hydrogen profiles from ozone v3band emission. J. Geophys. Res., 97A (12), 19509—19518 (1992).
https://doi.org/10.1029/92JA01544
Ahmadjian M., Nadile R. M., Wise J. O., Bartschi B. CIRRIS-1A space shuttle experiment.  J. Spacecraft and Rockets, 27 (6), P. 669 (1990).
https://doi.org/10.2514/3.26197
Bartschi B., Steed A., Blakeley J., et al. Cryogenic infrared radiance instrumentation for shuttle (CIRRIS 1A): Instrumentation and flight performance. Pros. SPIE Int. Soc. Opt. Eng., N 1765, 64—73 (1992).
Caledonia G. E., Green B. D., and Nadile R. M. The analysis of SPIRE measurements of atmospheric limb CO2(nu2) fluorescence. J. Geophys. Res., 90A (10), 9783—9788 (1985).
https://doi.org/10.1029/JA090iA10p09783
Dodd J. A., Winick J.. R., Blumberg W. A., et al. CIRRIS 1A observation of (13)C(16)O and (12)C(18)O fundamental band radiance in the upper atmosphere. Geophys. Res. Lett., 20 (23), 2683—2686 (1993).
https://doi.org/10.1029/93GL02844
Dodd J. A., Blumberg W. A., Lipson S. J., et al. OH (v, N) column densities from high-resolution Earthlimb spectra. Geophys. Res. Lett., 20 (4), 305—308 (1993).
https://doi.org/10.1029/93GL00091
Dodd J. A., Lipson S. J., Lowell J. R., et al. Analysis of hydroxyl Earthlimb airglow emissions: kinetic model for stale-to-state dynamics of OH (v, N). J. Geophys. Res., 99D (2), 3559—3585 (1994).
https://doi.org/10.1029/93JD03338
Espy P. G., Harris C. R., Steed A. J., et al. Rocketborne interferometer measurements of infrared auroral spectra. Planet. Space. Sci., 36 (6), 543—551 (1988).
https://doi.org/10.1016/0032-0633(88)90024-4
Fishkova L. M., Gokberg M. B., Pilipenko V. A. Relationship between night airglow and seismic activity. Ann. Geophys., 3 (6), P. 689 (1983).
James T. C., Kumer J. B. Fluorescence of CO2 near 4.3 µm: Application to daytime limb radiance calculations. J. Geophys. Res., 78, 8320—8329 (1973).
https://doi.org/10.1029/JA078i034p08320
Nebel H., Wmtersteiner P. P., Picard R. H., et al. CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 µm: application of Spectral Infrared Rocket Experiment data. J. Geophys. Res., 99D (5), 10409—10419 (1994).
https://doi.org/10.1029/94JD00315
Parrot M. Electromagnetic noise due 1o earthquakes. In: Handbook of Atmospheric Electrodynamics, 95—116 (CRC Press, N.Y.,  1995).
Rawlins W. T., Fraser M. E., Miller S. M. Rovibrational excitation of nitric oxide in the reaction of O2 with metastable atomic nitrogen. J. Phys. Chem., 93, P. 1097 (1989).
https://doi.org/10.1021/j100340a016
Sharma R. D., Ratkowski A. J., Sandberg R. L., et al. Description of SHARS, the strategic high-altitude radiance code. Rep. GL-TR-89-0229, Geophys. Lab., (Hanscom AFB, MA, 1989).
Sharma R. D., Wintersteiner P. P. CO2 component of daytime earth limb emission at 2.7 micrometers. J. Geophys. Res., 90A (10), 9789—9803 (1985).
https://doi.org/10.1029/JA090iA10p09789
Smith D. R. Evidence of off-axis leakage radiance in high-altitude IR  rocketborne  measurements.  Pros. SPIE Int. Soc. Opt. Eng., 30, 967—974 (1988).
Smith D. R., Ahmadjian M. Observation of nitric oxide rovibrational band head emissions in the quiescent airglow during the CIRRIS-1A Space Shuttle. Geophys. Res. Lett., 20 (23), 2679—2682 (1993).
https://doi.org/10.1029/93GL02623
Smith D. R., Blumberg W. A., Nadile R. M., et al. Observations of high-N  hydroxyl  pure rotation  lines in atmospheric emission spectra by the CIRRIS-1A Space Shuttle experiment. Geophys. Res. Lett., 19 (6), 593—596 (1992).
https://doi.org/10.1029/92GL00396
Stair A. T., Prilchard J., Coleman I. et al. Rocketborne cryogenic (10 K) high-resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra. Appl. Optics, 22 (7), 1056—1069 (1983).
https://doi.org/10.1364/AO.22.001056
Stair A. T., Sharma R. D., Nadile R. M., et al. Observation of limb radiance with cryogenic spectral infrared rocket experiment. J. Geophys. Res., 90A (10), 9763—9775 (1985).
https://doi.org/10.1029/JA090iA10p09763
Winick J. R., Picard R. H., Makhlouf U. Analysis of the 4.3 µm limb emission observed from STS-39 (abstract). EOS Trans. AGU, 73, 43:418 (1992).
Winick J. R., Picard R. H., and Wintersteiner P. P. On determining the carbon budget (CO2 and CO) of the lower thermosphere from non-equilibrium infrared radiance. Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, 5, P. 361 (1993).

Wintersteiner P. P., Picard R. H., Sharma R. D., et al. Line-by-line radiative excitation model for the non-equilibrium atmosphere: Application to CO2 15-µm emission. J. Geophys. Res., 97D (16), 18083—18117 (1992).
https://doi.org/10.1029/92JD01494