The limit accuracy of laser ranging of Earth artificial satellites

1Prokhorenko, VI
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 1996, 2 ;(2):70–81
https://doi.org/10.15407/knit1996.03.070
Section: Space Navigation and Communications
Publication Language: Russian
Abstract: 
The well-known physical factors that restrict the laser ranging accuracy are analysed in detail. The transverse group delay and temporal atmospheric aberrations are found to be the principal factors, while the outer space and nonlinear distortions in the atmosphere are much less important. The accuracy which can be actually attained in the single-frequency ranging of geodetic satellites is 1-5 mm. Some analytical equations are derived for the limit accuracy of a certain SLR station. Multicolour ranging methods are shown to be inferior in accuracy to the single-frequency ranging
Keywords: Earth artificial satellites, laser ranging
References: 
Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of femtosecond laser pulses [Optika femtosekundnyh lazernyh impul'sov], 309 p. (Nauka, Moscow, 1988) [in Russian].
Akhmanov S. A., Sukhorukov A. P., Khokhlov R. V. Self-focusing and diffraction of light in a Nonlinear medium. Uspehi fiz. nauk, 93 (1), 19—70 (1967) [in Russian].
Zubkovskii S. L., Kukharets V. P., Tsvang L. R.
Vertical profiles of turbulence characteristics in the surface and boundary atmospheric layers under unstable stratification. Izv. AN SSSR. Fizika atmosfery i okeana, 15 (1), P.44 (1979) [in Russian].
Kurbasov V. V. Corner reflectors for laser ranging. Use of corner reflectors in the laser ranging of space objects, P. 5 (Astrosovet AN SSSR, Moscow, 1973) [in Russian].
Lukin V. P. Atmospheric adaptive optics, 248 p. (Nauka, Novosibirsk, 1986) [in Russian].
Mironov N. T. Design and analysis models reductions laser measuring distances to satellites: Doctors thesis, 325 p. (Manuscript) (Kiev, 1994) [in Russian].
Motrunich I. I., Shvalagin I. V. Determination of free-air reduction in laser range measurements. Astrometriia i Astrofizika, Is. 37, 61—69 (1979) [in Russian].
Brookner E. Limit Imposed by Atmospheric Dispersion on the Minimum Laser Pulsewith That Can Be Transmitted Undistorted. Proc. IEEE, 57 (7), P. 1234 (1969).
https://doi.org/10.1109/PROC.1969.7220
Cristov I. P. Propagation of Femtosecond Light Pulses. Opt. Communs, 53, P. 364 (1985).
https://doi.org/10.1016/0030-4018(85)90018-5
Degnan J. Satellite Laser Ranging: Current Status and Future Prospects. IEEE Trans., GE-28, N 4, P. 398.
Hanna D. C., Yuratich M. A., Cotter D. Nonlinear optics of free atoms and molecules.  (Springer-Verlag, Berlin, 1979).
https://doi.org/10.1007/978-3-540-34766-8
Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global positioning system. Theory and practice, 326 p. (Springer-Verlag, Wien, New York, 1992).
https://doi.org/10.1007/978-3-7091-5126-6
International Association of Geodesy. Resolution No.l of the 13-th General Assembly.  Bull. Geod., 70, P. 360 (1963).
Jonson A. M., Stolen R. H., Simpson W. M. The Single-Stage Compression of Frequency Doubled Nd: Yttrium Aluminum Garnet Laser Pulses. Appl. Phys. Lett., 44, P. 729 (1984).
https://doi.org/10.1063/1.94897
Kulke O., Herpers U., fon der Linde D. Spectral Broadening of intense femtosecond pulses in atmospheric air. Opt. Communs., 63 (4), P. 275 (1987).
https://doi.org/10.1016/0030-4018(87)90354-3
Marcuse D. Pulse Distortion in Single-Mode Fibers. Appl. Opt., 19, P. 1653 (1980); 20, P. 2969 (1981); 3: Chirped Pulses. 20, P. 3573 (1981).
https://doi.org/10.1016/0030-4018(86)90290-7
Marini J. V., Murray J. C. W. Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. NASA Tech. Rep., N X-591, P. 73 (1973).
Martinez O. E. Pulse Distortions in Tilted Pulse Schemes for Ultrashort Pulses. Opt. Communs., 59, P. 229 (1986).
McCarthy D. IERS Standards (1992). IERS Tech. Note 13, P. 116 (Observatoire de Paris, 1992).
Mironov N. T., Emetz A. I. Etalon-1, -2 Center of Mass Correction and Array Reflectivity. Proc. Eighth Int. Workshop on Laser Ranging Instrument, P. 6 (Annapolis, MD, 1993).
Owens J. S. Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition. Appl. Opt., 6 (1), P. 51 (1967).
https://doi.org/10.1364/AO.6.000051
Riepl S. Two Color Ranging to Ajisai using a Streak Camera Detector. Proc. Ann. Eurolas Meeting, P. 78 (Munich, March 1995).
Satellite laser ranging in 1990s. Proc. Workshop held at the Belmont Conf. Center Elkrige, Maryland, Feb. 1—2, 1994. (NASA Conf. Publ. 3283), 115 p. (1994).
Topp M. R., Orner G. C. Group Dispersion Effects in Picosecond Spectroscopy. Opt. Communs., 13, P. 276 (1975).
https://doi.org/10.1016/0030-4018(75)90099-1

Treacy E. B. Compression of Picosecond Light Pulses. Phys. Lett., A-28, P. 112 (1968).
https://doi.org/10.1016/0375-9601(68)90584-7