Wind shifts in the Earth’s atmosphere over powerful hurricanes
Heading:
1Pilipenko, SG, 2Kozak, LV 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(6):43–50 |
https://doi.org/10.15407/knit2012.06.043 |
Publication Language: Russian |
Abstract: We consider changes of the zonal and meridional components of wind velocity at the mesosphere altitudes over areas of powerful weather formations — cyclones and anticyclones. Satellite limb measurements of the spacecraft UARS are used for the analysis. The change and rotation of wind velocity vector after the hurricane occurrence at altitudes of 100 km are obtained. These changes in the atmosphere dynamics can be attributed to the propagation of atmospheric gravity waves (AGW) in the non-isothermal windless atmosphere with consideration for viscosity and thermal conductivity. It is found that the determining factor of the wave attenuation and expansion is the gradient of the uniform atmosphere height (temperature) on height. The satellite measurement results are in good agreement with the numerical calculations of changes in the Earth’s upper atmosphere parameters as a result of the AGW propagation
|
Keywords: atmospheric gravity waves, cyclones, satellite measurements, wind velocity after the hurricane |
References:
1. Gavrilov N. M. Propagation of internal gravity waves in a stratified atmosphere. Izv. of AS USSR. Atmospheric and Oceanic Physics, 21 (9), 921—927 (1985) [in Russian].
2. Gordiec B. F., Kulikov Ju. N. On the role of turbulence and infrared radiation in the heat balance of the lower thermosphere. Infrared spectroscopy of cosmic matter and the properties of the environment in space, Ed.by N. G. Basov, Tr. Fiz. in-ta, AS USSR, Vol. 130, P. 29–47 (1982) [in Russian].
3. Gossard E. E., Hooke W. H. Waves in the Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian].
4. Kazimirovskij Je. S., Kokourov V. D. Movement in the ionosphere, 344 p. (Nauka, Novosibirsk, 1979) [in Russian].
5. Kozak L.V. Changes of turbulence processes in thermosphere in the passage of inner gravity waves. Kosm. nauka tehnol., 8 (5-6), 86—90 (2002) [in Ukrainian].
6. Kozak L.V., Ivchenko V.M. Wind changes in upper atmosphere over earthquakes from satellite measurements. Kosm. nauka tehnol., 8 (4), 54—63 (2002) [in Russian].
7. Larkina V. I., Nalivajko A. V., Gershenzon N. I. et al. Observations on the satellite "Intercosmos-19" VLF-radiation associated with seismic activity. Geomagnetism and Aeronomy, 23 (5), 842—846 (1983) [in Russian].
8. Liperovskij V. A., Pohotelov O. A., Shalimov S. L. Ionospheric precursors to earthquakes, 340 p. (Nauka, Moscow, 1992) [in Russian].
9. Percev N. N., Shalimov S. L. Generation of atmospheric gravity waves in a seismically active region and their impact on the ionosphere. Geomagnetism and Aeronomy, 36 (2), 111—118 (1996) [in Russian].
10. Pylypenko S. G., Kozak L. V. An analysis of propagation and dissipation of atmosphere gravity waves. Kosm. nauka tehnol., 16 (4), 22—29 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.04.022
https://doi.org/10.15407/knit2010.04.022
11. Webb W.L. (Ed.) Thermospheric circulation, 350 p. (Mir, Moscow, 1975) [in Russian].
12. Fishkova L. M., Toroshelidze T. I. Displaying seismic activity variations in the glow of the night sky. In Auroras and the glow of the night sky, N 33, 17—23 (Nauka, Moscow, 1989) [in Russian].
13. Hajns K. O. Termospherical circulation, 428 p. (Mir, Moscow, 1975) [in Russian].
14. Yudin V. A., Gavrilov N. M. A Semi-Empirical Model of Closing a System of Equations for Gravity Waves and Turbulence in the Upper Atmosphere. Izv. of AS USSR. Atmospheric and Oceanic Physics, 25 (10), 1026—1032 (1989) [in Russian].
15. Dzubenko M. I., Kozak L. V. Aurora activity depresion after near seismic shocks. Proceedings of International Symposium: From solar corona through interplanetary space, into Earth's magnetosphere and groundbased observations, Febr. 1–4, 2000, Kyiv, Ukraine, 129—131 (Kyiv, 2000).
16. Francis S. H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere. J. Geophys. Res., 78, 2278—2301 (1973).
https://doi.org/10.1029/JA078i013p02278
https://doi.org/10.1029/JA078i013p02278
17. Francis S. H. Global propagation of atmospheric gravity waves: a review. J. Atmos. Terr. Phys., 37, 1011—1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
https://doi.org/10.1016/0021-9169(75)90012-4
18. Hedin A. E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159—1172 (1991).
https://doi.org/10.1029/90JA02125
https://doi.org/10.1029/90JA02125
19. Hocking W. K. Turbulence in the altitude region 80—120 km. Adv. Space Res., 10 (12), 153—161 (1990).
https://doi.org/10.1016/0273-1177(90)90394-F
https://doi.org/10.1016/0273-1177(90)90394-F
20. Kozak L. V., Dzubenko M. I., Ivchenko V. M. Temperature and thermosphere dynamics behavior analysis over earthquake epicentres from satellite measurements. Phys. and Chem. Earth. Parts A/B/C, 29 (4–9), 507—515 (2004).
https://doi.org/10.1016/j.pce.2003.09.020
https://doi.org/10.1016/j.pce.2003.09.020
21. Pylypenko S. G., Kozak L. V. Variations of the temperature of mesosphere above storms from satellite measurements. WDS`11 Proceedings of contributed papers. Part II. Physics of plasmas and ionized media (MatfyzPress, vydavatelstvi Matematiko-fyzikalni fakulty Univerzity Karlovy v Praze), 97—102 (2011).
22. Reber C. A., Trevathan C. E., McNeal R. J., Luther M. R. The Upper Atmosphere Research Satellite (UARS) mission. J. Geophys. Res., 98 (D6), 10643— 10647 (1993).
https://doi.org/10.1029/92JD02828
https://doi.org/10.1029/92JD02828
23. Shepherd G., Thuillier G., Gault W. A., et al. WINDII — The wind imaging interferometer on the upper atmosphere research satellite. J. Geophys. Res., 98 (D6), 10725—10750 (1993).
https://doi.org/10.1029/93JD00227
https://doi.org/10.1029/93JD00227