Degradation of spacecraftpolymer films on long exposure to atomic oxygen flows and vacuum ultraviolet radiation
1Shuvalov, VA, 1Tokmak, NA, 2Reznichenko, NP 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine 2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine |
Kosm. nauka tehnol. 2015, 21 ;(5):57–68 |
https://doi.org/10.15407/knit2015.05.057 |
Publication Language: Russian |
Abstract: The technique is developed for determining degradation of mass and geometric characteristics of polymer (polyimides kapton-H, PM-1E, Teflon FEP and polyethylene) films that are being used as spacecraft structural elements on long exposure to supersonic flows of atomic oxygen and vacuum ultraviolet radiation. The threshold values of the relation between the energy flow of ultraviolet radiation and the atomic oxygen flow are established at generation of the synergetic effect of losses in masses of polymer films kapton-H, PM-1E and polyethylene. The synergetic effect is not found in Teflon FEP. |
Keywords: atomic oxygen, degradation, polymer, spacecraft, synergistic effect., vacuum ultraviolet radiation |
1. Akishin A.I., Guzhova S.K. Ionospheric plasma interaction with materials and equipment of spacecrafts [Vzaimodejstvie ionosfernoj plazmy s materialami i oborudovaniem kosmicheskih apparatov]. Fiz.i him.obrabotki materialov. N3, P.40 —47 (1993) [in Russian].
2. Anan'eva O.A., Milinchuk V.K., Zagorskij D.L. Research of the sided illuminated polymer films exposed at orbital space station "Mir" [Issledovanie odnostoronne aljuminirovannyh poliimidnyh plenok, jeksponirovannyh na orbital'noj kosmicheskoj stancii «Mir»]. Himija vysok.jenergij. 41(6), P.445 (2007) [in Russian].
3. Verkhovtseva E.T., Yaremenko V.I., and Telepnev V.D. Gas jet simulator of the solar VUV and USX radiation and the effect of its radiation on some materials. Space science and technology, 4 (2/3), 102 —109 (1998) [in Russian].
https://doi.org/10.15407/knit1998.02.102
4. Vojcenja V.S., Guzhova S.K., Titov V.I. Effects of low temperature plasma and electromagnetic radiation materials [Vozdejstvie nizkotemperaturnoj plazmy i jelektromagnitnogo izluchenija na materialy]. 224 p. (Energoatomizdat, Moscow, 1991) [in Russian].
5. Polymeric materials for space technique. Requirements for ultraviolet radiation stability tests: HOST R 25645.338-96 from 3rd December 1996. 16 p. (Gosstandart Rossii, Moscow, 1996) [in Russian].
6. Gurevich A.V., Shvarcburg A.V. Nonlinear theory of propagation of radio waves in the ionosphere [Nelinejnaja teorija rasprostranenija radiovoln v ionosphere]. 273 p. (Nauka, Moscow, 1973) [in Russian].
7. Johnson F.S. Solar Radiation. Satellite environment handbook, Ed.by F.S.Johnson. 191 p. (Mir, Moscow, 1966) [in Russian].
8. Kuvaldina E.V., Ljubimov V.K., Maksimov A.I. et al. The temperature dependence of the etching rates of polyimide film in the plasma [Issledovanie temperaturnyh zavisimostej skorostej travlenija poliimidnoj plenki v plazme. Himija vysok.jenergij.] 24(5), P.471 —474 (1990) [in Russian].
9. Kuvaldina E.V., Ljubimov V.K., Rybkin V.V. The rate constant and the probability of interaction of atomic oxygen with a polyimide film [Konstanta skorosti i verojatnost' vzaimodejstvija atomarnogo kisloroda s poliimidnoj plenkoj]. Himija vysok.jenergij. 26(5), P.475 —478 (1992) [in Russian].
10. Milinchuk V.K., Klinshpont Je.R., Sheluhov I.P. et al. Degradation of polymer materials on the orbital space station "Mir" [Degradacija polimernyh materialov na orbital'noj kosmicheskoj stancii «Mir»]. Izv. vyssh. ucheb. zavedenij. Jadernaja jenergetika. N2, P.108 (2002) [in Russian].
11. Nikiforov A.P., Ternovoj A.I., Samsonov P.V. et al. Problems of studying the mechanism of interaction of the vacuum ultraviolet radiation and hyperthermia atomic oxygen (5 eV) with polymeric materials for spacecraft [Problemy izuchenija mehanizma vzaimodejstvija vakuumnogo UF-izluchenija i gipertermicheskogo atomarnogo kisloroda (5 jeV) s polimernymi materialami kosmicheskih letatel'nyh apparatov]. Him.fizika. 21(5), P.73 —82 (2002) [in Russian].
12. Novikov L.S. . Current status and prospect of research satellites interaction with the environment [Sovremennoe sostojanie i perspektiva issledovanij vzaimodejstvija kosmicheskih apparatov s okruzhajushhej sredoj]. Model' kosmosa: Nauchno-informacionnoe izdanie. Vol. 2. Ed. by M.I.Panasjuk, L.S.Novikov. P.10 —38 (KDU, Moscow, 2007) (Vols. 1-2; Vol. 2) [in Russian].
13. Novye naukoemkie tehnologii v tehnike. Vol.17. Vozdejstvie kosmicheskoj sredy na materialy i oborudovanie kosmicheskih apparatov. Ed. by K.S.Kasaev. 280 p. (ZAO NII JeNCITEH, Moscow, 2000) (Vols. 1-24; Vol. 17) [in Russian].
14. Pereverzev E.S. The models of damage accumulation in durability problems [Modeli nakoplenija povrezhdenij v zadachah dolgovechnosti]. 360 p. (Nauk.dumka, Kiev, 1995) [in Russian].
15. Chernik V.N., Naumov S.F., Demidov S.A. et al. Studies of polymer films with protective coatings for spacecrafts [Issledovanija poliimidnyh plenok s zashhitnymi pokrytijami dlja kosmicheskih apparatov]. Perspektivnye mater. N6, P.14 —20 (2000) [in Russian].
16. Shishackaja L.P., Jakovlev S.A., Volkova G.A. Discharge lamps for vacuum UV region of the spectrum [Gazorazrjadnye lampy dlja vakuumnoj UF-oblasti spektra]. Journal of Optical Technology. N7, 72 —74 (1995) [in Russian].
17. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Contact Diagnostics of High-Velocity Flows of Rarefied Plasma. High Temperature. 43(3), P.343—351 (2005) [in Russian].
https://doi.org/10.1007/s10740-005-0071-y
18. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen. Cosmic Research. 45(4), P.314 —324 (2007) [in Russian].
https://doi.org/10.1134/S001095250704003X
19. Shuvalov V.A., Pis'mennyj N.I., Kochubej G.S., Tokmak N.A. The weight loss of polymer films spacecraft when exposed to atomic oxygen and VUV radiation [Poteri massy poliimidnyh plenok kosmicheskih apparatov pri vozdejstvii atomarnogo kisloroda i vakuumnogo ul'trafioletovogo izluchenija]. Cosmic Research. 52(2), P.106 —112 (2014) [in Russian].
https://doi.org/10.1134/S0010952514020063
20. Shuvalov V.A., Churilov A.E., Bystritskii M.G. Diagnostics of Flows of Pulsed Plasma by Probe, Microwave, and Photometric Methods. High Temperature. 38(6), P. 877—885 (2000) [in Russian].
https://doi.org/10.1023/A:1004124919825
21. Allegri G., Corradi S., Marchetti M., et al. On the Degradation on Polymeric Thin Films in LEO Space Environment. Proc.9 th Int.Symp.on Materials in a Space Environment. ESA SP-540, P.255 —262 (Noordwijk, 2003).
22. Banks B.S., Backus J.A., Manno M.V. Prediction of atomic oxygen erosion yield for spacecraft polymers. J.Spacecraft and Rockets. 48(1), P.14 —22 (2011).
https://doi.org/10.2514/1.48849
23. Chernic V.N., Novikov L.S., Akishin A.I. About adequacy of ground-based tests of polymers at higher atomic oxygen energy (20 —30 eV). Proc.10 th Int.Symp.on Materials in a Space Environment and 8 th Int.Conf.on Protection of Materials and Structures in a Space Environment (Collioure, France, 2006). P.127—132 (ESTEC, Noordwijk, 2006).
24. De Groh K. Investigation of Teflon FEP embrittlement on spacecraft in low earth orbit. Proc.7 th Intern.Symp.on Materials in Environment.Toulouse, France, 1997. P.255 —266 (ESTEC, Noordwijk, 1997).
25. De Groh K., Smith D. Analysis of metallized teflon thin film materials performance on satellites. J.Spacecraft and Rockets. 41(3), 322 —325 (2004).
https://doi.org/10.2514/1.10725
26. ECSS-E-10-04A. Space engineering: Space environment. [Standard] from 21 January 2000, 219 p. (ESTEC, Noordwijk, 2000).
27. Grossman E., Gouzman I. Space environment effects on polymers in low earth orbit. Nucl. Instrum. and Meth. in Phys. Res. B208, P.48 —57 (2003).
https://doi.org/10.1016/S0168-583X(03)00640-2
28. Grossman E., Gouzman I., Lempert G., et al. Assessment of atomic — oxygen flux in low — Earth orbit ground simulation facilities. J.Spacecraft and Rockets. 41(3), 356—368 (2004).
https://doi.org/10.2514/1.10890
29. Grossman E., Lifshits Y., Wolan J., et al. In situ erosion study of kapton using novel hyperthermal oxygen atom source. J.Spacecraft and Rockets. 36(1), 75—86 (1999).
https://doi.org/10.2514/2.3435
30. Koontz S., King G., Dunnet A., Kirkendahl T. Intelsat solar array coupon atomic oxygen flight experiment. J.Spacecraft and Rockets. 31(3), 475—481 (1994).
https://doi.org/10.2514/3.26463
31. Koontz S., Leger L., Albyn K., Cross J. Vacuum ultraviolet radiation / Atomic oxygen synergism in materials reactivity. J.Spacecraft and Rockets. 27(3), 346—355 (1990).
https://doi.org/10.2514/3.26146
32. Koontz S.L., Leger L.J., Rickman S.L., et al. Oxygen Interactions with material. III.Mission and induced environments. J.Spacecraft and Rockets. 32(3), 475—482 (1995).
https://doi.org/10.2514/3.26640
33. Koontz S., Leger L., Visentine J. EOIM-III Mass spectrometry and polymer chemistry: STS-46, July — August 1992. J.Spacecraft and Rockets. 32(3), 483—494 (1995).
https://doi.org/10.2514/3.26641
34. Miller S., Banks B., Waters D. Investigation into the differences in atomic oxygen erosion yields of materials in ground based facilities compared to those in LEO. Proc. 10 th Int.Symp.on Materials in a Space Environment and 8 th Int.Conf.on Protection of Materials and Structures in a Space Environment (Collioure, France, 2006). P.120—126 (ESTEC, Noordwijk, 2006).
35. Naddaf M., Balasubramanian C., Alegaonkar P.S., et al. Surface interaction of polyimide with oxygen ECR plasma. Nucl.Instrum.and Meth.in Phys.Res. B222, P.135—144 (2004).
https://doi.org/10.1016/j.nimb.2003.12.087
36. Paillons A. Spacecraft surface exposure to atomic oxygen in LEO. Technol.Environment spatial. P.353 —375 (ESA, Toulous, 1987).
37. Pippin H.G. Final report of analysis of Boeing specimens from on the effects of space environment on materials experiment. Appendix B. VA 23681–2199. 10 p. (NASA Langley Research Center, Hampton, 2008).
38. Shimamura A., Miyazaki E. Investigation into synergistic effects of atomic oxygen and vacuum ultraviolet. J.Spacecraft and Rockets. 46(2), 241—254 (2009).
https://doi.org/10.2514/1.31815
39. Tagawa M. Atomic Oxygen — Induced polymer degradation phenomena in simulated LEO.space environments: How do polymers react in a complication space environment. Acta Astron. N62, 203 —210 (2008).
https://doi.org/10.1016/j.actaastro.2006.12.043
40. Tagawa M., Yokota K., Ohmae N. Synergistic study on atomic oxygen-induced erosion of polyethylene with vacuum ultraviolet. J.Spacecraft and Rockets. 41(3), 345 —349 (2004).
https://doi.org/10.2514/1.10888
41. Yokota K., Ikeda K., Tagawa M., et al. Synergistic effect of vacuum ultraviolet on a atomic oxygen-induced erosion of fluorinated polymer. Proc.10 th Int. Symp. on Materials in a Space Environment Colloure and 8 th Int.Conf.on Protection of Materials and Structures in a Space Environment. P.127—132 (ESTEC, Noordwijk, 2006).
42. Yokota K., Seikyu S., Tagawa M., et al. A quantitative study in synergistic effects of atomic oxygen and ultraviolet regarding polymer erosion in LEO space environment. Proc.9 th Int.Symp.on Materials in a Space Environment. P.265 —273 (ESTEC, Noordwijk, 2003).
43. Yokota K., Tagawa M. Comparison polyethylene and polyimid as a fluence monitor of atomic oxygen. J.Spacecraft and Rockets. 44(2), 434 —439 (2007).
https://doi.org/10.2514/1.15038
44. Zimcik D.G., Maag C.R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41g. J.Spacecraft and Rockets. 25(2), 162 —168 (1988). 45. Zimcik D.G., Wertheimer M.R., Balmain K.B., et al. Plasma-deposited protective coating for spacecraft applications. J.Spacecraft and Rockets. 28(6), 652—657 (1991).
https://doi.org/10.2514/3.26295