Numerical algorithm for the determination of spectral characteristics of non-homogeneous shell structures

1Babich, DV, 1Lugovoi, PZ, 2Tarashchenko, DT
1S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 1999, 5 ;(4):16-21
https://doi.org/10.15407/knit1999.04.016
Publication Language: Russian
Abstract: 
A unified algorithm based on the Ostrogradsky-Hamilton principle was elaborated for the numerical calculation of free vibration frequencies, critical values of statical loads, and domains of dynamical instability of parametric vibrations of non-homogeneous rotary shells widely used in the aerospace technology.
Keywords: dynamical instability, non-homogeneous rotary shells, Ostrogradsky-Hamilton principle
References: 
1. Babich D. V. Method of discrete approximation of the functional in stability problems of shells of revolution. Prikladnaia Mekhanika, 19 (2), 38—44 (1983) [in Russian].
2. Bogdanovich A. E. Nonlinear Problems in the Dynamics of Cylindrical Composite Shells, 295 p. (Zinatne, Riga, 1987) [in Russian].
3. Bolotin V. V. Dynamic Stability of Elastic Systems, 600 p. (Gostekhizdat, Moscow, 1956) [in Russian].
4. Vasiliev V. V. Mechanics of Composite Structures, 269 p. (Mashinostroenie, Moscow, 1987) [in Russian].
5. Vol'mir A. S. Stability of Elastic Systems, 879 p. (Fizmatgiz, Moscow, 1963) [in Russian].
6. Gaidaichuk V. V., Savchenko A. T. Ustojchivost' torocilindricheskih obolochek. In: Soprotivlenie materialov i teorija sooruzhenij, Is. 44, 57—61 (1984) [in Russian].
7. Korolev V. I. Elastic-Plastic Deformation of Shells, 304 p. (Mashinostroenie, Moscow, 1971) [in Russian].

8. Lugovoi P. Z., Mukoid V. P., Meish V. F. Dynamics of shell constructions under explosion loadings, 280 p. (Naukova dumka, Kiev, 1991) [in Russian].