Numerical algorithm for the determination of spectral characteristics of non-homogeneous shell structures
Heading:
1Babich, DV, 1Lugovoi, PZ, 2Tarashchenko, DT 1S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 1999, 5 ;(4):16-21 |
https://doi.org/10.15407/knit1999.04.016 |
Publication Language: Russian |
Abstract: A unified algorithm based on the Ostrogradsky-Hamilton principle was elaborated for the numerical calculation of free vibration frequencies, critical values of statical loads, and domains of dynamical instability of parametric vibrations of non-homogeneous rotary shells widely used in the aerospace technology.
|
Keywords: dynamical instability, non-homogeneous rotary shells, Ostrogradsky-Hamilton principle |
References:
1. Babich D. V. Method of discrete approximation of the functional in stability problems of shells of revolution. Prikladnaia Mekhanika, 19 (2), 38—44 (1983) [in Russian].
2. Bogdanovich A. E. Nonlinear Problems in the Dynamics of Cylindrical Composite Shells, 295 p. (Zinatne, Riga, 1987) [in Russian].
3. Bolotin V. V. Dynamic Stability of Elastic Systems, 600 p. (Gostekhizdat, Moscow, 1956) [in Russian].
4. Vasiliev V. V. Mechanics of Composite Structures, 269 p. (Mashinostroenie, Moscow, 1987) [in Russian].
5. Vol'mir A. S. Stability of Elastic Systems, 879 p. (Fizmatgiz, Moscow, 1963) [in Russian].
6. Gaidaichuk V. V., Savchenko A. T. Ustojchivost' torocilindricheskih obolochek. In: Soprotivlenie materialov i teorija sooruzhenij, Is. 44, 57—61 (1984) [in Russian].
7. Korolev V. I. Elastic-Plastic Deformation of Shells, 304 p. (Mashinostroenie, Moscow, 1971) [in Russian].
8. Lugovoi P. Z., Mukoid V. P., Meish V. F. Dynamics of shell constructions under explosion loadings, 280 p. (Naukova dumka, Kiev, 1991) [in Russian].