Data structures for space data computation on high-performance computer systems
Heading:
1Derkach, ВT 1Karpenko Physico-Mechanical Institute of the National Academy of Science of Ukraine, Lviv, Ukraine |
Kosm. nauka tehnol. 1998, 4 ;(4):93–96 |
https://doi.org/10.15407/knit1998.04.093 |
Publication Language: Russian |
Abstract: Data structures for the most important computing algorithms are proposed. Such data structures can be used for an efficient implementation of the linear algebra, Fourier transform, wavelet transform, image processing, and others algorithms.
|
Keywords: image processing |
References:
1. Grytsyk V. V., Derkach B. T., Kulikov S. P., et al. Improving the efficiency and productivity of solving systems of linear algebraic equations with sparse matrices of coefficients: Preprint Phys.-Mech. Inst. of the AS of USSR, 54 p. (Lvov, 1980) [in Russian].
2. Parallel Processing of Information. Vol. 3, 288 p. (Nauk. dumka, Kiev, 1986) [in Russian].
3. Brameller A., Allan R. Sparsity its practical application to system analys, 192 p. (London, 1976).
4. Duff I. S., Reid J. K. A comparison of sparsity orderiugs for obtaining a pivot sequence in Gaussian Alimination. J. Inst. Math. and Appl., N 4, 281-291 (1971).
5. Gentelman W. M., George A. Sparse matrix software. In: Sparse matrix comput., 243-262 (Acad. press, New York, 1976).
https://doi.org/10.1016/b978-0-12-141050-6.50019-2
https://doi.org/10.1016/b978-0-12-141050-6.50019-2
6. Heller D. A. Survey of parallel algorithms in numerical linear algebra. SIAM, 20 (4), 740-777 (1978).
7. Samet H. Data structures for quadtree approximation and compression. Communs ACM, 28 (5), 973-979 (1985).
https://doi.org/10.1145/4284.4290