The «Obstanovka» experiment aboard the International Space Station

Рубрика: 
1Klimov, SI, 2Korepanov, VYe.
1Space Research Institute of the Russian AS, Moscow, Russia
2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(2-3):081-086
https://doi.org/10.15407/knit2004.02.081
Мова публікації: Ukrainian
Анотація: 
The problems concerning the interaction of such super-large body as the International Space Station (ISS) with space plasma are of the top-priority importance for both technological and scientific experiments aboard the ISS. They are especially essential when some ISS peculiarities, namely, power supply system construction and surface coating structure are taken into account. That is why the Russian-Ukrainian experiment «Obstanovka» («Environment» in English) with international participation is planned for the nearest future to be carried out aboard the Russian segment of the ISS. The main goal of the experiment is to study the ISS electromagnetic environment state. The experiment details are presented.
Ключові слова: electromagnetic environment state, ISS, «Obstanovka» experiment
References: 
1. Grigoryan O. R., Klimov S. I., Klos Z., et al. Instrument for the ecologycal monitoring on "MIR" station. Inzhenernaja jekologija, No. 2, 44—50, (1997) [In Russian].
2. Grigoryan O. R., Klimov S. I., Kuznetsov S. N., et al. Human activity and electromagnetic pollution of near space [Antropogennyj faktor jelektromagnitnogo zagrjaznenija blizhnego kosmosa]. Inzhenernaja jekologija, No. 4, 24—41 (1996) [In Russian].
3. Soprunyuk P. M., Klimov S. I., Korepanov V. E. Electric fields in space plasma, 190 p. (Naukova dumka, Kyiv, 1994) [In Russian].
4. Bering E. A., Koontz S. L., Evans D. S., et al. Calibrating and deriving physical parameters using plasma contactor data from the international space station. Adv. Space Res., 32 (11), 2335—2341 (2003).
5. Ferencz Cs. A geometric resolution of the contradiction between the propagation of electromagnetic plane wave in moving dielectrics and the Einsteinian addition of velocities. Acta Technica Ac. Sci. H, 84 (1-2), 147—151 (1977).
6. Ferencz Cs. Electromagnetic wave propagation in inhomo-geneous media: The analysis of the group velocity. Acta Technica Ac. Sci. H, 86 (1-2), 169—213 (1978).
7. Ferencz Cs., Ferencz O. E., Hamar D., Lichtenberger J. Whistler phenomena; Short impulse propagation, 260 p. (Kluwer, Dordrecht, 2001)
8. Georgieva K., Kirov B., Atanasov D. On the relation between solar activity and seismicity on different time-scales. J. Atmospheric Electricity, 22 (3), 291—300 (2002).
9. Klos Z., Kiraga A., Pulinets S. A. Broad-band hectometric emission in the topside ionosphere created by ground-based transmitters. Adv. Space Res., 10, 177—180 (1990).
10.  Lichtenberger J.,   Tarcsai  Gy,   Pasztor  Sz.,   et al.  Whistler doublets and hyperfine structure recorded digitally by the signal analyzer and sampler on the active satellite.  J. Geophys. Res., 96, 21149—21158 (1991).
11. Parrot M. World map of ELF/VLF emissions as observed by low-orbiting satellite. Ann. Geophys., 8, 135— 146 (1990).
12. Rothkaehl H., Klos Z. Broadband HF emissions as an indicator of global changes within the ionosphere. Adv. Space Res., 31 (5), 1371 — 1376 (2003).
13. Rothkaehl H., Klos Z., Zbyszycski Z., et al. The global distribution of RF emission in the topside ionosphere and high energy particle precipitation. J. Tech. Phys., 40, 313—316 (1999).