Visual inspection of potential exocomet transits identified through Machine Learning and statistical methods
Рубрика:
| 1Dobrycheva, DV, 1Kulyk, IV, 1Karakuts, DR, 1Vasylenko, MYu., 1Pavlenko, Ya.V, 2Shubina, OS, 3Luk’yanyk, IV 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Astronomical Institute of Slovak Academy of Sciences, Tatranska Lomnica, Slovak Republic 3Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
| Space Sci. & Technol. 2025, 31 ;(6):080-093 |
| https://doi.org/10.15407/knit2025.06.080 |
| Язык публикации: English |
Аннотация: In this work, we explore several ways to detect possible exocomet transits in the TESS (The Transiting Exoplanet Survey Satellite) light curves. The first one has been presented in our previous work, a machine learning approach based on the Random Forest algorithm. It was trained on asymmetric transit profiles calculated as a result of the modelling of a comet transit, and then applied to real star light curves from Sector 1 of TESS. This allowed us to detect 32 candidates with weak and non-periodic brightness dips that may correspond to comet-like events. The aim of this work is to analyse the events identified by the visual inspection to make sure that the features detected were not caused by instrumental effects. The second approach to detect possible exocomet transits, which is proposed, is an independent statistical method to test the results of the machine learning algorithm and to look for asymmetric minima directly in the light curves. This approach was applied to Pictoris light curves using TESS data from Sectors 5, 6, 32, and 33. The algorithm reproduced nearly all previously known events deeper than 0.03 % of the star flux, showing that it is efficient to detect shallow and irregular flux changes in the different sectors of the TESS data and at the different levels of noise.
The combination of machine learning, visual inspection, and statistical analysis facilitates the identification of faint and shortlived asymmetric transits in photometric data. Although the number of confirmed exocomet transits is still small, the growing amount of observations points to their likely presence in many young planetary systems. |
| Ключевые слова: minor planets; eclipses, planetary systems, planets and satellites; machine learning methods, statistical methods, transits, visual inspection |
References:
1. Bannister M., Pfalzner S., Pearce T., et al. (2025). The Origins & Reservoirs of Exocomets. Space Sci. Rev., 221, 7, id. 90.
2. Dobrycheva D. V., Hetmantsev O. O., Vavilova I. B., et al. (2025). Discovery of the Polar Ring Galaxies with deep learning.
arXiv.2505.05890.
3. Dobrycheva D. V., Vasylenko M. Yu., Kulyk I. V., et al. (2023). Hunting for exocomet transits in the TESS database using
the Random Forest method. Space Sci. and Technol., 6, 68-79.
4. Gilliland R. L., Chaplin W. J., Dunham V. S., et al. (2011). Kepler Mission Stellar and Instrument Noise Properties.
Astrophys. J. Suppl. Ser., 197, 1, id. 6, 1-19.
5. Gragera-M'as J. L., Torres S., Mustill A. J., et al. (2025). A Kinematic History of Stellar Encounters with Beta Pictoris.
arXiv:2510.02509.
6. Hoeijmakers H. J., Jaworska K. P., Prinoth B. (2025). Exocomets of Pictoris: I. Exocomet destruction, sodium absorption
and disk line variability in 17 years of HARPS observations. Astron. and Astrophys., 700, id. A239, 1-13.
7. Jenkins J. M., Twicken J. D., McCauliff S., et al. (2016). The TESS science processing operations center. Proc. SPIE, 9913,
id. 99133E, 1-20.
8. Kennedy G. M., Hope G., Hodgkin S. T., et al. (2019). An automated search for transiting exocomets. Mon. Notic. Roy.
Astron. Soc., 482, 4, 5587-5596.
9. Kiefer F., Lecavelier des Étangs A., Vidal-Madjar A., et al. (2017). Detection of a repeated transit signature in the light
curve of the enigma star KIC 8462852: A possible 928-day period. Astron. and Astrophys., 608, id. A132, 1-11.
10. Kiefer F., Van Grootel V., Lecavelier des Etangs A., et al. (2023). Hint of an exocomet transit in the CHEOPS light curve of
HD 172555. Astron. and Astrophys., 671, id. A25, 1-12.
11. Khramtsov V., Vavilova I. B., Dobrycheva D. V., et al. (2022). Machine learning technique for morphological classification
of galaxies from the SDSS. III. Image-based inference of detailed features. Space Sci. and Technol., 28, No. 5, 27-55.
12. Lecavelier des Etangs A. (2024). Evaporation, from exoplanets to exocomets. Comptes Rendus. Physique, 24, S2, id. 142.
13. Lecavelier des Etangs A., Cros L., Hébrard G., et al. (2022). Exocomets size distribution in the beta Pictoris planetary
system. Scientific Reports, 12, id. 5855.
14. Lecavelier des Etangs A. Vidal-Madjar A., Ferlet R. (1999). Photometric stellar variation due to extra-solar comets. Astron.
and Astrophys., 343, 916-922.
DOI:10.48550/arXiv.astro-ph/9812381
15. Lightkurve Collaboration, Cardoso J. V. de M., Hedges Ch., et al. (2018). Lightkurve: Kepler and TESS time series analysis
in Python. Astrophys. Source Code Library, record ascl:1812.013.
16. Luk'yanyk I., Kulyk I., Shubina O., et al. (2024). Numerical simulations of exocomet transits: Insights from beta Pic and
KIC 3542116. Astron. and Astrophys., 688, id. A65, 1-9.
17. Norazman A., Kennedy G., Cody A., et al. (2025). Search for transiting exocomets in TESS sectors 1-26. Mon. Notic. Roy.
Astron. Soc., 542(2), 1486-1508.
18. P'al A., Szak'ats R., Kiss C., et al. (2020). Solar system objects observed with TESS first data release: Bright Main-belt
and Trojan Asteroids from the Southern Survey. Astrophys. J. Suppl. Ser., 247, 1, id. 26, 1-9.
19. Pavlenko Ya., Kulyk I., Shubina O., et al. (2022). New exocomets of beta Pic. Astron. and Astrophys., 660, id. A49, 1-8.
20. Pawellek N., Wyatt M., Matr'a L., et al. (2021). A ~75 per cent occurrence rate of debris discs around F stars in the beta
Picmoving group. Mon. Notic. Roy. Astron. Soc., 502, 4, 5390-5416.
21. Pedregosa F., Varoquaux G., Gramfort A., et al. (2011). Scikit-learn: Machine Learning in Python. J. Machine Learning
Res., 12, 2825-2830. DOI:10.48550/arXiv.1201.0490
22. Rappaport S., Vanderburg A., Jacobs T., et al. (2018). Likely transiting exocomets detected by Kepler. Mon. Notic. Roy.
Astron. Soc., 474, 2, 1453-1468.
23. Rebollido I., Eiroa C., Montesinos B., et al. (2020). Exocomets: A spectroscopic survey. Astron. and Astrophys., 639, A11,
1-59.
DOI:10.1051/0004-6361/201936071
24. Rebollido I., Stark C. C., Kammerer J., et al. (2024). JWST-TST High Contrast: Asymmetries, Dust Populations, and Hints
of a Collision in the beta Pictoris Disk with NIRCam and MIRI. Astron. J., 167, 2, id.69, 1-28.
25. Ricker G. R., Winn J. N., Vanderspek R., et al. (2015). Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes,
Instruments, and Systems, 1, id. 014003, 1-11.
26. Sibthorpe B., Kennedy G. M., Wyatt M. C., Lestrade J-F., Greaves J. S., Matthews B. C., Duchêne G. (2018). Analysis
of the Herschel DEBRIS Sun-like star sample. Mon. Notic. Roy. Astron. Soc., 475, 3, 3046-3064.
27. Van Cleve J. E., Howell S. B., Smith J. C., et al. (2016). That's How We Roll: The NASA K2 Mission Science Products and
Their Performance Metrics. Publ. Astron. Soc. Pacif., 128, 965, id. 075002, 1-16.
28. Vasylenko M., Pavlenko Ya., Dobrycheva D., et al. (2022). An algorithm for automatic identification of asymmetric transits
in the TESS database. Proc. Int. Astron. Union, 364, 264-266.
29. Vavilova I. B., Dobrycheva D. V., Vasylenko M. Yu., et al. (2021). Machine learning technique for morphological
classification
of galaxies from the SDSS. I. Photometry-based approach. Astron. and Astrophys., 648, id.A122, 1-14.
30. Zieba S., Zwintz K., Kenworthy M. A., Kennedy G. M. (2019). Transiting exocomets detected in broadband light by TESS
in the b Pictoris system. Astron. and Astrophys., 625, id. L13, 1-7.
