Dtnamic model of vector motion and its application in spacecraft unaxial orientation problems
Рубрика:
1Yefymenko, N, 1Kudermetov, R 1National University “Zaporizhzhia Polttechnic”, Zaporizhzhia, Ukraine |
Space Sci. & Technol. 2024, 30 ;(4):24-33 |
https://doi.org/10.15407/knit2024.04.024 |
Язык публикации: English |
Аннотация: The object of study is the spacecraft attitude control system. The subject of the study is the quaternion dynamic equation of motion of an arbitrary normalized vector and methods for constructing on its basis algorithms to control the spacecraft’s uniaxial orientation. In this work, a new dynamic model of vector motion in a body-fixed frame is obtained, its properties are investigated, and methods for solving uniaxial orientation problems using this model are considered. This model application significantly simplifies the synthesis control task, which, in this case, is reduced to control synthesis for a system that is a set of second-order integrating links. In many cases, the synthesis problem has an analytical solution for such systems. The resulting control algorithms are much simpler to implement than the ones obtained using the traditional model. The results of numerical simulation, which confirm the effectiveness of the proposed algorithm, are presented.
|
Ключевые слова: angular velocity, quaternion, spacecraft, stabilization, terminal reorientation, uniaxial orientation |
References:
1. Avanzini G., Zavoli A., De Matteis G., Giulietti F. (2022). Single axis pointing for underactuated spacecraft with a residual angular momentum. Aerospace Sci. and Technology, 124, 107512. doi:10.1016/j.ast.2022.107512.
2. Curtis H. D. (2020). Orbital Mechanics for Students (4-th ed.). Butterworth-Heinemann, 792 p. doi:10.1016/B978-0-08-102133-0.00013-1
3. Khalili N., Ghorbanpour A. (2020). Optimal tuning of single-axis satellite attitude control parameters using genetic algorithm.Proc. ASME 2020 Dynamic Systems and Control Conf., Vol. 2. doi:10.1115/DSCC2020-3212
4. Lebedev D. V., Tkachenko A. I. (1991). Inertial Control Systems. Algorithmic Aspects. Naukova Dumka, 208 p. [in Russian].
5. Likhachev V. N., Sazonov V. V., Ul’yashin A. I. (2003). Single-axis solar orientation of a satellite of the Earth. Cosmic Res., 41(2), 159-70. doi:10.1023/A:1023387131144
6. Wittenburg J. (1977). Dynamics of Systems of Rigid Bodies. Vieweg+Teubner Verlag, 224 p. doi:10.1007/978-3-322-90942-8.
7. Yefymenko N. (2015). Synthesis of control algorithms of the spacecraft spatial reorientation with the use of dynamicequations of a solid body rotational motion in Rodrigo-Hamilton parameters. J. Automation and Inform. Sci., 47(6), 1-16. doi:10.1615/JAutomatInfScien.v47.i6.10
8. Yefymenko N., Kudermetov R. (2022). Quaternion models of a rigid body rotation motion and their application for spacecraft attitude control. Acta Astronautica, 194, 76-82. doi:10.1016/j.actaastro.2022.01.029
9. Zavoli A., De Matteis G., Giulietti F., Avanzini G. (2017). Single-axis pointing of an underactuated spacecraft equipped with two reaction wheels. J. Guidance, Control, and Dynamics, 40(6), 1465-1471. doi:10.2514/1.G002182
10. Zubov V. I. (1975). Lectures on the Control Theory. Nauka, 496 p. [in Russian]
2. Curtis H. D. (2020). Orbital Mechanics for Students (4-th ed.). Butterworth-Heinemann, 792 p. doi:10.1016/B978-0-08-102133-0.00013-1
3. Khalili N., Ghorbanpour A. (2020). Optimal tuning of single-axis satellite attitude control parameters using genetic algorithm.Proc. ASME 2020 Dynamic Systems and Control Conf., Vol. 2. doi:10.1115/DSCC2020-3212
4. Lebedev D. V., Tkachenko A. I. (1991). Inertial Control Systems. Algorithmic Aspects. Naukova Dumka, 208 p. [in Russian].
5. Likhachev V. N., Sazonov V. V., Ul’yashin A. I. (2003). Single-axis solar orientation of a satellite of the Earth. Cosmic Res., 41(2), 159-70. doi:10.1023/A:1023387131144
6. Wittenburg J. (1977). Dynamics of Systems of Rigid Bodies. Vieweg+Teubner Verlag, 224 p. doi:10.1007/978-3-322-90942-8.
7. Yefymenko N. (2015). Synthesis of control algorithms of the spacecraft spatial reorientation with the use of dynamicequations of a solid body rotational motion in Rodrigo-Hamilton parameters. J. Automation and Inform. Sci., 47(6), 1-16. doi:10.1615/JAutomatInfScien.v47.i6.10
8. Yefymenko N., Kudermetov R. (2022). Quaternion models of a rigid body rotation motion and their application for spacecraft attitude control. Acta Astronautica, 194, 76-82. doi:10.1016/j.actaastro.2022.01.029
9. Zavoli A., De Matteis G., Giulietti F., Avanzini G. (2017). Single-axis pointing of an underactuated spacecraft equipped with two reaction wheels. J. Guidance, Control, and Dynamics, 40(6), 1465-1471. doi:10.2514/1.G002182
10. Zubov V. I. (1975). Lectures on the Control Theory. Nauka, 496 p. [in Russian]