Modeling the interaction of spacecraft polymers with atomic oxygen in low orbits in the Earth's atmosphere

Shuvalov, VO, Pismennyi, MI, Tokmak, MA, 1Kulagin, SM, Riznychenko, MP
1Institute of Technical Mechanics of the NAS and SSA of Ukraine, Dnipro, Ukraine
Space Sci. & Technol. 2024, 30 ;(2):54-68
https://doi.org/10.15407/knit2024.02.054
Язык публикации: Ukrainian
Аннотация: 
The paper represents procedures developed for the simulation of the interaction of polymers, which are the spacecraft structure materials, with the flows of hyperthermal atomic oxygen (AO) at very low-Earth orbits (VLEOs) by use of high-energy ions of a rarefied plasma. The development is based on laboratory and space test data (the Mir orbital station, the ISS, the Space Shuttle, and Spot 1, 2, 4). The parameters that characterize the physicochemical and dynamic interaction of atomic oxygen flow with the spacecraft structure’spolymers are determined, such as erosion yield, solar absorptance, momentum and energy accommodation coefficients, and also erosion depth and surface roughness polymer film. The parameters of the «AO — polymer» interaction are reported as a function of energy and AO fluence. The use of AO ion flows for energies 30…100 eV allows one to simulate an interaction of «AO — polymers» at altitudes 170…300 km  VLEOs) in the Earth’s atmosphere.
References: 

1. Allegri G., Corradi S., Marchetti M., Milinchuk K. (2003). On degradation of polymeric thin films in LEO Space Environment. Proc. 9 th Int. Symposium on Materials, 255-264

2. Balmain K.G., Dubois G.R. (1979). Surface discharges on Teflon, Mylar and kapton. IEEE Transactions of Nuclear Science, NS-26, № 6, 5146-5151 [in English].
https://doi.org/10.1109/TNS.1979.4330287

3. Banks B.A., Waters D.L., Thorson S.D., de Groh K.K., Snyder A., Miller S.K. (2006). Comparison of atomic oxygen erosion yields of materials at various energy and impact angles. NASA/TM-2006-214363, August 2006. 7 p.

4. Banks B.A., Backus J.A., Manno M.V., Waters D.L., Cameron K.C., de Groh K.K. (2011). Prediction of atomic oxygen erosion yield for spacecraft polymers. J. Spacecraft and Rockets, 48, is 1, 14-22.
https://doi.org/10.2514/1.48849

5. Behrisch R. (1983). Sputtering by practical bombardment II. Berlin-Heidelberg-New York-Tokio: Springer Verlag. 410 p. .
https://doi.org/10.1007/3-540-12593-0

6. Bitetti G., Marchetti M., Mileti S., Valente F., Scaglione S. (2007). Degradation of the surfaces exposed to the space environment. Acta Astronautica. 60, No 3, 166-174 .
https://doi.org/10.1016/j.actaastro.2006.07.019

7. Chen L., Lee C.H. (2006). Interaction potential between atomic oxygen and polymer surface in low Earth orbit, J. Spacecraft and Rockets, 43, No 3, 487-496 [.
https://doi.org/10.2514/1.13373

8. Duo S., Li M., Zhou Y. (2006). Effect of ion implantation upon erosion resistance of polyimide films in space environment. Transactions of Nonferrous Metals Society of China, 16 No 2, s661-s664 .
https://doi.org/10.1016/S1003-6326(06)60273-2

9. ECSS-10-04 A. (2009). Space Environment, Issued 15 November 2009, ESA-ESTEC. 219 p.

10. Gonzalez R.I., Tomczak S.J., Minton, A.L. Brunsvold, Hoflund G.B. (2003). Synthesis and atomic oxygen erosion testing of space survivable POSS (polyhedral oligomeric silsesquioxane) polyimides. Proc. 9 th Int. Symposium on Materials in a Space Environment, 113-120.

11. Goodman F.O., Wachman H.Y. (1976). Dynamics of gas-surface scattering, New-York, San Francisco, London: Academic Press. 342 p [in English].

12. Goto A., Imeda K., Yukumatsu K. Kimoto Y. (2021). Property changes in materials due to atomic oxygen in the low Earth orbit. CEAS Space J., 13, No 3, 415-432 .
https://doi.org/10.1007/s12567-021-00376-2

13. Grossman E., Gouzman I. Space environment effects on polymers in low Earth orbit, Nuclear. (2003). Instruments and Methods in Physics Research. B.208, 48-57 . doi: 10.1016/S0168-583X(03)00640-2
https://doi.org/10.1016/S0168-583X(03)00640-2

14. Grossman E., Gouzman I. , Lemper G., Noter Y., Lifshitz Y. (2004). Assessment of atomic oxygen flux in Low-Earth-Orbit ground simulation facilities. J. Spacecraft and Rockets, 41, No 3, 356-359 .
https://doi.org/10.2514/1.10890

15. Koontz S.L., Leger L.J., Rickman S.L. (1995). Oxygen interaction with material III-mission and induced environment. J. Spacecraft and Rockets, 32, No 3, 475-495
https://doi.org/10.2514/3.26640

16. Kuvaldina E.V., Lyubimov V.K., Rybkin V.V. (1992). Velocity constant and bribability of interaction of atomic oxygen with polyimide films. High Energy Chemistry, 26, 475-478 [in .

17. Lian R., Lei X., Xue S., Chen Y., Zhang Q. (2021). Janus polyimide films with outstanding AO resistance, good optical transparency and high mechanics strength. Applied Surface Science. 535, 147654
https://doi.org/10.1016/j.apsusc.2020.147654

18. Miller S.K., Dever J.A. (2011). Materials International Space Station experiment 5 polymers films thermal control experiment. J. Spacecraft and Rockets, 48, No 2, 240-245 .
https://doi.org/10.2514/1.49482

19. Naddaf M., Balasubramanin C., Alegaonkar P.S., Bhoraskar V.N., Mandel A.B., Ganeshan V., Bhoraskar S. V. (2004). Surface interaction of polyimide with oxygen ECR plasma. Nuclear Instruments and Methods in Physical Research. B222, No 1-2, 135-144 .
https://doi.org/10.1016/j.nimb.2003.12.087
20. Paillons A. (1987). Spacecraft surface exposure to atomic oxygen in LEO. in: Technol. Environment Spatial. Toulouse: ESA. 353-375 .

21. Roussel J.F., Alet I., Fage D., Pereira A. (2004). Effect of space environment on spacecraft surfaces in sun-synchronous environment. J. Spacecraft and Rockets. 41, No 5, 812-820 .
https://doi.org/10.2514/1.1211

22. Shimamura H., Miyazaki E. (2009). Investigation into synergistic effects of atomic oxygen and vacuum ultraviolet. J. Spacecraft and Rockets, 62, No 2, 241-247 .
https://doi.org/10.2514/1.31815

23. Shuvalov V.A., Reznichenko N.P., Tsokur A.G., Nosikov S.V. (2016). Synergetic effects of the action of atomic oxygen and vacuum ultraviolet radiation on polymers in the Earth's ionosphere. High Energy Chemistry. 50, 171-176 .
https://doi.org/10.1134/S0018143916030140

24. Shuvalov V.A., Gorev N.A., Tokmak N.A., Kochubei G.S. (2017). Physical simulation of the long-term dynamic action of a plasma beam on a space debris object. Acta Astrnautica. 132, 97-102].
https://doi.org/10.1016/j.actaastro.2016.11.039

25. Tagawa M., Yokota K. (2008). Atomic oxygen induced polymer degradation phenomena in simulated LEO space environment: How do polymers react in a complication space environment. Acta Astronautica, 62, No 2-3, 203-211 .
https://doi.org/10.1016/j.actaastro.2006.12.043

26. Tagawa M., Doi H., Yokota K. (2009). Atomic oxygen concentrators for material exposure acceleration test in low Earth orbit. J. Spacecraft and Rockets. 46, No 2, 226-229 .
https://doi.org/10.2514/1.30866

27. Vezker R., Grossman E., Gouzman I., Eliaz N. (2007). Residual stress effects on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen. Polimer. 18, No 1, 19-24 .
https://doi.org/10.1016/j.polymer.2006.10.035

28. Waters D.L., Banks B.A., Thorson S. D., de Groh K. K., Miller S.K. (2007). Comparison of the atomic oxygen erosion depth and cone height of various materials at hyperthermal energy. NASA/TM-2007-214374. 6 p.

29. Yokota K., Seikyu S., Tagawa M., Ohmae N. (2003). A quantitative study in synergistic effects of atomic oxygen and ultraviolet regarding polymer erosion in LEO space environment. Proc. 9 th Int. Symposium on Materials, 265-272 .

30. Yokota K., Tagawa M. (2007). Comparison polyethylene and polyimide as a fluence monitor of atomic oxygen. J. Spacecraft and Rockets, 44, No 2, 434-439 .
https://doi.org/10.2514/1.15038

31. Zangwill A. Physics at surface. (1988). Cambridge, New-York: Cambridge University Press. 454 p.

32. Zimcik D.G., Maag C.R. (1988). Results of apparent oxygen reactions with spacecraft materials during Shuttle Flight STS-41 G. J. Spacecraft and Rockets, 25, No 2, 162-168.
https://doi.org/10.2514/3.25965

33. Zimcik D.G., Wertheimer M.R., Balmain K. B., Tennyson R.C. (1991). Plasma-deposited protective coating for spacecraft applications. J. Spacecraft and Rockets. 28, No 6, 652-637 .
https://doi.org/10.2514/3.26295