Peculiarities of the distribution and detection of cosmic rays, gamma-ray bursts, and other high-energy sources
1Fedorov, Yu.I, 1Kolesnyk, Yu.L, 1Sergijenko, O, 1Vasylenko, AA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Space Sci. & Technol. 2023, 29 ;(6):093-101 |
https://doi.org/10.15407/knit2023.06.093 |
Язык публикации: Ukrainian |
Аннотация: The importance of using databases of scientific space missions for fundamental astrophysical research is demonstrated. Based on the spacecraft data and the obtained solutions of the transport equation, the estimates of level of the cosmic rays modulation in the heliospheric magnetic fields were made. Based on the archives of ground-based and space telescope observations in the radio and optical ranges, the radio properties of a sample of isolated active galactic nuclei in the nearby Universe have been systematized. Opportunities that may arise from the databases of future multiwavelength space missions are also considered.
|
1. Amati L., O'Brien P.T., Goetz D. et al. (2021). The THESEUS space mission: science goals, requirements and mission concept. Experimental Astronomy. Vol. 52. P. 183-218
https://doi.org/10.1007/s10686-021-09807-8
2. Ayala Solares H.A., Coutu S., Cowen D.F. et al. (2020). The Astrophysical Multimessenger Observatory Network (AMON): Performance and science program. Astroparticle Physics. Vol. 114. P. 68-76
https://doi.org/10.1016/j.astropartphys.2019.06.007
3. Bobik, P., Putis, M., Kolesnyk, Y.L., Shakhov, B.A. (2021) Estimation of the modulation level of cosmic rays at high energies. Mon. Not. R. Astron. Soc., Volume 503, Issue 3, pp. 3386-3393
https://doi.org/10.1093/mnras/stab597
4. Chesnok N.G., Sergeev S.G., Vavilova I.B. (2009). Optical and X-ray variability of Seyfert galaxies NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and quasar 1E 0754. Kinematics and Physics of Celestial Bodies, vol. 25, issue 2, pp. 107-113
https://doi.org/10.3103/S0884591309020068
5. Ciolfi R., Stratta G., Branchesi M. et al. (2021). Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy. Vol. 52. P. 245-275
https://doi.org/10.1007/s10686-021-09795-9
6. Dolginov A.Z., Toptygin, I. (1967). Multiple Scattering of Particles in a Magnetic Field with Random Inhomogeneities. Soviet Physics JETP, Vol. 24, p. 1195
7. Dorman L.I., Katz M.E., Fedorov Yu.I., Shakhov B.A. (1983). Variation of cosmic ray energy in interplanetary space. Astrophys. Space Sci., Vol. 94 , P.43.
https://doi.org/10.1007/BF00651760
8. Fedorov Yu. I., Gnatyk R.B., Hnatyk B.I. et al. (2016). Ballistic and diffusive components in the dynamic spectra of ultrahigh energy cosmic rays from nearby transient sources. Kinematics and Physics of Celestial Bodies, vol. 32, issue 3, pp. 105-119
https://doi.org/10.3103/S088459131603003X
9. Fedorov Yu.I., Shakhov B.O., Kolesnyk Yu.L (2022). Modulation of Galactic Cosmic Ray Intensity in the Approximation of Small Anisotropy. Kinematics and Physics of Celestial Bodies, vol. 38, issue 4, pp. 181-189
https://doi.org/10.3103/S0884591322040043
10. Gleeson L.J., Axford W.I. (1968). Solar modulation of galactic cosmic rays. Astrophys. J., 159, P.1011
https://doi.org/10.1086/149822
11. Kolesnyk, Y.L. Bobik, P., Shakhov B.A., Putis M. (2017). An analytically iterative method for solving problems of cosmic-ray modulation. Mon. Not. R. Astron. Soc., Volume 470, Issue 1, p.1073-1085
https://doi.org/10.1093/mnras/stx1202
12. Kompaniiets O.V., Babyk Iu.V., Vasylenko A.A. et al. (2023). X-ray spectral and image spatial models of NGC 3081 with Chandra data. Proceedings of the International Astronomical Union, Volume 362, pp. 100-104 .
https://doi.org/10.1017/S1743921322001624
13. Novosyadlyj B., Sergijenko O., Apunevych S., Pelykh V. (2010). Properties and uncertainties of scalar field models of dark energy with barotropic equation of state. Physical Review D. Vol. 82. id. 103008. 16 p.
https://doi.org/10.1103/PhysRevD.82.103008
14. Parker E.N. (1958). Dynamics of the interplanetary gas and magnetic field. Astrophys. J., 128, P.664.
https://doi.org/10.1086/146579
15. Parker E.N. (1966). The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13, P.9.
https://doi.org/10.1016/0032-0633(65)90131-5
16. Pulatova N.G., Vavilova I.B., Sawangwit U., Babyk Iu., Klimanov S. (2015). The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Not. R. Astron. Soc., Volume 447, Issue 3, p.2209-2223
https://doi.org/10.1093/mnras/stu2556
17. Pulatova N.G., Vavilova I.B., Vasylenko A.A., Ulyanov O.M. (2023). Radio properties of the low-redshift isolated galaxies with active nuclei. Kinematika i fizika nebesnyh tel (Online), vol. 39, issue 2, pp. 47-72
https://doi.org/10.15407/kfnt2023.02.047
18. Rosati P., Basa S., Blain A. W. et al. (2021). Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy. Vol. 52. P. 407-437.
https://doi.org/10.1007/s10686-021-09764-2
19. Sergijenko O., Novosyadlyj B. (2009). Perturbed dark energy: Classical scalar field versus tachyon. Physical Review D. Vol. 80. id. 083007. 13 p.
https://doi.org/10.1103/PhysRevD.80.083007
20. Sergijenko O., Durrer R., Novosyadlyj B. (2011) Observational constraints on scalar field models of dark energy with barotropic equation of state. Journal of Cosmology and Astroparticle Physics, Vol. 08., id. 004, 25 p.
https://doi.org/10.1088/1475-7516/2011/08/004
21. Shakhov B.A., Kolesnyk Yu.L. (2006). Iteration method for solution of cosmic ray propagation theory boundary problems. Kinematika i Fizika Nebesnykh Tel, vol. 22, no. 2, p. 101-108.
22. Tanvir N. R., Le Floc'h E., Christensen L. et al. (2021). Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy. Vol. 52. P. 219-244.
https://doi.org/10.1007/s10686-021-09778-w
23. Vasylenko A.A., Vavilova I.B., Pulatova N.G. (2020). Isolated AGNs NGC 5347, ESO 438‑009, MCG-02-04-090, and J11366-6002: Swift and NuSTAR joined view. Astron. Nachr., Volume 341, Issue 8, pp. 801-811
https://doi.org/10.1002/asna.202013783
24. Vos E.E., Potgieter M.S. (2015). New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophysical Journal, Volume 815, Issue 2, article id. 119, 8 pp.
https://doi.org/10.1088/0004-637X/815/2/119