Атомарний кисень на низьких навколоземних орбітах: ретроспективний огляд досліджень
Рубрика:
Махмуд, ВМ, Елфіки, Д, Робаа, СМ, Ельнавауі, МС, Юсеф, ШМ |
Косм. наука технол. 2023, 29 ;(2):32-44 |
https://doi.org/10.15407/ knit2023.02.032 |
Язык публикации: Англійська |
Аннотация: У статті подано ретроспективний огляд досліджень атомарного кисню (АО) на низьких навколоземних орбітах (LEO). Космічний простір LEO є перешкодою для всіх супутників, які перебувають в ньому. Кілька його складових частин становлять велику небезпеку для матеріалів і підсистем супутників. Такі орбіти зручні для дистанційного зондування та експериментальних супутників. Для підтримки рівня працездатності космічних апаратів необхідно виконувати ретельні дослідження стану середовища LEO та його компонентів. AO, який є гіперактивним станом кисню, вважається одним із найнебезпечніших компонентів середовища LEO. Він може реагувати з багатьма матеріалами і тим самим змінювати фізичні, оптичні та механічні властивості, які впливають на функціональність супутника. Для підтримки супутника на його орбіті з певним запасом надійності потрібне зменшення агресивного впливу на нього екологічних компонентів LEO. Прогнозування впливу AO на матеріали, які будуть використовуватися в космосі, гарантує їх правильний вибір. В роботі надаються деякі рекомендації щодо створення установок AO для тестування матеріалів, що піддаються агресивному впливу космічного середовища LEO.
|
Ключевые слова: атомарний кисень, викиди корональної маси, навколоземний простір, низбкі навколоземні орбіти |
References:
1. Vest E. Charles, 1991: Hopkins J., 1991: APL Technical Digest, 12(1).
2. Banks B. A. and Miller S. K. R., 2006: Overview of Space Environment Effects on Materials and GRC's Test Capabilities, NASA Seal/Secondary Air System Workshop, Volume 1
3. Mundari N., 2011: Effect of Atomic Oxygen Exposure on Spacecraft Charging Properties, Diss. PhD thesis, Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Japan.
4. Bank B. B.; Groah K. K. de. And Miller S. K., 2004: Low Earth Orbital Atomic Oxygen Interaction with Spacecraft Materials, NASA/TM-213400.
5. Samwell S., 2014: Low earth orbital atomic oxygen erosion effect on spacecraft materials. Space Res J 7(1):1-13.
6. Mahmoud W. M.; Elfiky D. and Robaa S. M., 2021: Effect of Atomic Oxygen on LEO CubeSat, Int. J. Aeronaut. Space Sci. 22: 726-733.
7. Harris I. L.; Chambers A. R. and Roberts G. T., 1998: Results from the Space Technology Research Vehicle 1a Atomic Oxygen Experiment, Spacecraft and Rockets J, 35(5): 647-652
8. Mende S. B.; Swenson G. R. and Clifton K. S., 1984: Space plasma physics: atmospheric emissions photometric imaging experiment. Science, V 225: 191-193.
9. Caledonia G. E., 1989: Laboratory simulations of energetic atom interactions occuring in low Earth orbit, in Rarefied Gas Dynamics: Space Related Studies, (eds E.O. Munts, D.P. Weaver and D.H. Campbell), Progress in Astronautics and Aeronautics Series, AIAA, Menlo Park, CA, 116:129-142.
10. Banks B. A.; de Groh K. K. and Miller S. K., 2005: Low Earth orbital atomic oxygen interactions with spacecraft materials, Materials Research Society Symposium Proceedings, 851.
11. Santiago-Prowald and Salghetti Drioli L., 2012: Space Environment and Materials, in Space Antenna Handbook, William A. Imbriale, Steven (Shichang) Gao and Luigi Boccia, The Netherlands, 99: 106-137
12. Dickerson R. E.; Gray H. B. and Haight G. P., 1979: Chemical Principles, The Benjamin/Cummings Publishing Company Cummings, Menlo Park, p. 457.
13. Dever J.; Banks B.; de Groh K. and Miller S., 2005: Degradation of spacecraft materials, in Handbook of Environmental Degradation of Materials, William Andrew, Norwich, NY., pp. 465-501.
14. Arnold G. S. and Peplinksi D. R., 1986: Reaction of high-velocity atomic oxygen with carbon. AIAA J., 24(4): 673-677.
15. De Groh K. K., Banks B. A. and Mccarthy C. E., (2008): MISSE 2 PEACE polymers atomic oxygen erosion experiment High Performance Polymers, international space station J., 20(4-5): 388409.
16. Lu Y.; Shao Q.; Yue H. and Yang F., 2019: A Review of the Space Environment Effects on Spacecraft in Different Orbits, IEEE Access, 7: 93473-93488.
17. Dennison J. R.; Bruson J.; Swaminathan P.; Wesley N. and Frederickson A. R., 2006: Method of High Resistivity Measurement Related to Spacecraft Charging; IEEE transaction on plasma society, 34(5): 2204-2218.
18. Hasting D. and Garrett H., 2004: Spacecraft Environment Interaction, Cambridge University press ISBN 0-521-60756-6, Chapter 1: 1-11.
19. Rana A. and Abdulmajeed M., 2016: Tribocorrosion, advancesin tribology,Pranav H. Darji (ed.) Intech Open.
20. Banks B. A.; de Groh K. K.; Backus J. A., 2008: Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers, Low Earth Orbit J.
21. Banks B. A.; Stueber T.; Miller S. K. and Groh K. K., 2017: Monte Carlo Computational Modeling of Atomic Oxygen Interactions.
22. Grossmann K. U. and Vollmann K., 1997: Thermal infrared measurements in the middle and upper atmosphere, Adv. Space Res., 19: 631- 638.
https://doi.org/10.1016/S0273-1177(97)00156-7
23. Mlynczak M. G.; Martin-Torres F. J.; Johnson D. G.; Kratz D. P.; Traub W. A. and Jucks K., 2004: Observations of the O (3 P) fine structure line at 63 mm in the upper mesosphere and lower thermosphere, Geophys. Res. J., 109, A12306,
24. Mlynczak M. G.; Hunt L. A.; Mast J. C.; Marshall B. T.; J. M. R.; Smith A. K.; Siskind D. E.; Yee J-H.; Mertens C. J.; Martin-Torres F. J.; Thompson R. E.; Drob D. P. and Gordley L. L., 2013: Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. Geophysical Research - Atmospheres J., 118(11): 5724-5735.
25. Bourassa R. J.; and Gillis J. R., 1992: Atomic oxygen exposure of LDEF experiment trays: NASA Contractor Report. 26. Samaniego J. I.; Wang X.; Andersson L.; Malaspina D.; Ergun R. E. and Horányi M. A., 2018: Investigation of coatings for Langmuirprobes in an oxygen‐rich space environment. Geophysical Research: Space Physics J.,123: 6054-6064.
27. Samaniego J. I.; Wang X.; Andersson L.; Malaspina D.; Ergun R. E. and Horányi M. A., 2019: Investigation of coatings for Langmuirprobes: Effect of surface oxidation on photoemission characteristics. Geophysical Research: Space Physics J.,124: 2357-2361.
28. Schumm G.; Bonnell J. W.; Wygant J. R.; and amp Mozer F. S., 2020: Calculation of the atomic oxygen fluence on the Van Allen Probes. Geophysical Research: Space Physics J., 125, e2020JA027944.
29. Kleiman J.; Iskanderova Z.; Gudimenko Y.; and Horodetsky S., 2003: Atomic oxygen beam sources: a critical overview, Materials in a Space Environment, 540:313-324
30. Goto, A., Umeda, K., Yukumatsu, K. et al. Property changes in materials due to atomic oxygen in the low Earth orbit. CEAS Space J 13, 415-432 (2021).
31. Orient O. J.; Chutjian A. and Murad E., 1990: Collision of O-(2P) Ions and O (3P) Atoms with Surfaces", in "Materials Degradation in Low Earth Orbit (LEO)", Ed. Srinivasan V. and Banks B.A., A Publication of TMS (Minerals, Metals, Materials), 87-95.
32. Brinza D. E.; Coulter D. R.; Chung S. Y.; Smith K. O.; Moacanin J. and Liang R. H., 1989: A Facility of Studies of Atomic Oxygen Interactions With 3rd Materials, in Proc. Int. SAMPLE Electronics Conf,646-652.
33. Cross John B. and Cremers David A., 1986: High Kinetic Energy (1-10 eV) Laser Sustained Neutral Atom Beam Source, NIMB13:658-662. https://doi.org/10.1016/0168-583X(86)90586-0
34. Outlaw R.A., 1989: Producing Essentialy Pure Beam of Atomic Oxygen - by providing material which dissociates molecular oxygen and dissolves atomic oxygen into its bulk, US Patent, 4: 817-828.
35. Banks B. A.; Rutledge S. K.; Paulsen P. E. and Stueber T. J., 1989: Simulation of the Low Earth Orbital Atomic Oxygen Interaction with Materials by Means of an Oxygen Ion Beam, NASA TM-101971.
36. Ferguson D. C., 1990: Atomic Oxygen Effects on Refractory Materials,Materials Degradation in Low Earth Orbit (LEO), In Annual Meeting of the Minerals, Metals, and Materials Society , 97-105.
37. Caledonia G. E. and Krech R. H., 1990: Studies of the Interaction of 8 km/s Oxygen Atoms with Selected Materials, ibid, 145-154.
38. Cuthbertson J. W.; Langer W. D. and Motley R. W., 1991: Atomic Oxygen Beam Source for Erosion Simulation, ibid, 77-86.
39. Tennyson R. C. and Morison W. D., 1990: Atomic Oxygen Effects on Spacecraft Materials, ibid, 59-76.
40. Nikiforov A. P.; and Scurat V. E.; 1993: Kinetics of polyimide etching by supersonic beams consisting of atomic and molecular oxygen mixtures, Chemical Physics Letters, 212, (12):43-49.
https://doi.org/10.1016/0009-2614(93)87105-C
41. New Scientific Technologies in Industry, Encyclopedia, Chief editor Kasayev K. S., 2000: Space Environment Effects on Spacecraft Materials and Equipment, Editors Novikov L. S., Panasyuk M.I., Moscow, "Entsitech" (in Russian), 17.
42. Finckenor M. M.; Edwards D. L.; Vaughn J.; Schneider T. A.; Hovater M. A. and Hoppe D. T., 2002: Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center, NASA/TP -212076.
43. Dooling D.; Finckenor M.M., 1999: Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces", NASA/TP - -209-260.
44. Cuthbertson J. W.; Langer W. D. and Motley R. W., 1990: Atomic Oxygen Beam Source for Orbital Environments, Materials & Manufacturing,5(3): 387-396.
45. Krech R. H., and Caledonia G. E., 1993: AO Experiments at PSI, Report PSI.
46. Caledonia G. E.; Krech R. H. and Green B. D., 1987: A High Flux Source of Energetic Oxygen Atoms for Material Degradation Studies, AIAA J., 25: 59-63.
47. Caledonia G. E.; Krech R. H.; Green B. D. and Pirri A. N., 1990: US Patent Number 4,894,511, Jan. 16 1990.
48. Cazaubon B., Paillous A., Siffre J., and Thomas R., 1996: Five-Electron-Volt Atomic Oxygen Pulsed-beam Characterization by Quadrupolar Mass spectrometry, Spacecraft and Rockets J., 33(6).
49. Grossman E.; Guzman I.; Viel-Inguimbert V. and Dinguirard M., 2003: Modification of 5eV Atomic- Oxygen Laser Detonation Soruce, Spacecraft and Rockets J., 40(1): 110113.
50. Zhang J. G., Donna J., and Minton T. K., 2002: Reactive and inelastic scattering dynamic of hyperthermal oxygen atoms on a saturated hydrocarbon surface", Chemical Physics J.,17(13): 6239-6251.
51. Cross J. B.; Spangler L. H.; Hoffbauer M. A. and Archuleta F. A., 1987: High Intensity 5 eV CW Laser Sustained O-Atom Exposure Facility for Material Degradation Studies, SAMPE Quarterly, 18(2): 41-47.
52. Morison D.; Tennyson R. C. and French Y. B., 1988: Microwave Oxygen Atom Beams Source. Fourth European Symposium on Spacecraft Materials in Space Environment, CERT, Toulouse, France, pp. 435-441.
53. Scurat V. E.; Nikiforov A. P. and Ternovoy A. I., 1994: Investigations of Reactions of Thermal and Fast Atomic Oxygen (up to 5 eV) with Polymer Films, Proc. 6th Inter. Symp. On Materials in a Space Environment, ESTEC, Noordwijk, The Netherlands, pp 183-187
. 54. Vered R.; Lempert G.D.; Grossman E.; Haruvy Y.; Marom G.; Singer L.; and Lifshitz Y., 1994: Atomic Oxygen Erosion on Teflon FEP and Kapton H by Oxygen from Different Sources: Atomic Force Microscopy and Complementary Studies, Proc. 6th Symp. on Materials in Space Environment, ESTEC, Noordwijk, The Netherlands, pp. 175-179.
55. Tagawa M.; Kumiko Y.; Nobuo O. and Hiroshi K., 2000: Volume diffusion of atomic oxygen in.-SiO2 protective coating, High Performance Polymers, 12 (1): 53-63.
56. Titov V. I.; Solovyev G. G.; Tarasov J. I.; Chernik V. N.; Naumov S. F.; Demidov S. A. and Kutlaliev A. I., 1991: «Complex-2» Low Earth Orbital Environment Simulation Faculty for Materials Durability Evaluation", Proc. 5th Intern Symp. On Spacecraft Materials in Space Environment, Cannes, pp. 4345.
57. Chernik V. N., 1997: Atomic Oxygen Simulation by Plasmadynamic Accelerator with Charge Exchange", SP-399, Proc. 7th Int. Symp. Materials in Space Environment, Toulouse, pp 237-241.
58. Danilichev P. V.; Kudryavtsev N. N.; Mazyar O. A.; Smirnov N. V. and Suhov A. M., 1993: Pulsed Source of Fast Molecular Flux on the Base of Electromagnetic Shock Tube", Pribori i Tehnika Eksperimenta (in Russian), N4, pp. 151-155.
59. Outlaw R. A. and Davidson Mark R., 1994: Small Ultrahigh vacuum compatible hyperthermal oxygen atom generator, J. Vac. Sci. Technol.,12 (3): 854-860.
60. Shively J.; Miglionico C.; Roybal R.; King T.; Robertson R.; Baird J.; Davis S. and Stein C., 1997: Combined Effects of the Lower Earth Orbit Environment on polymeric materials, High temperature and environmental effects on polymeric composites, ASTM STP1302, American Society for Testing and Materials, 2: 223-242.
61. Jia-nian S.; Yan-fa H.; Long-jiang Z. and Meishuan L., 2001: The generation and control of high flux neutral atomic oxygen beam, High Power Laser and particle Beams,13 (2): 228-232.
62. Sun G.; Tong J. and Li J., 1999: The deceleration and neutralization systems for microwave discharge atomic oxygen simulation, Chinese Space Science and Technology (1000-758X),19 (6): 5357.
63. Wang J.; Yu Z.; Cai C.; Li H. and Zhang J., 1998: Coaxial atomic oxygen simulation facility and its properties, Chinese Space Science and Technology (1000-758X),18 (5): 50-55.