Концептуальний підхід до використання постбіотиків на основі бактерійних мембранних нановезикул для профілактики розладів здоров'я космонавтів

Орловська, І, Подоліч, О, Кухаренко, О, Зубова, Г, Рева, О, А. Сезаре, Д, Гоес-Нето, А, Азеведо, В, Бар, Д, Вера, ЖПде, Козировська, Н
Косм. наука технол. 2022, 28 ;(6):34-51
https://doi.org/10.15407/knit2022.06.034
Язык публикации: Англійська
Аннотация: 
Функціональні продукти, що містять живі мікроорганізми та їх компоненти, необхідні для нормального функціонування організму людини, оскільки нормальна мікробіота кишечника потребує живлення зовнішніми мікробними організмами та їх наноструктурами – мембранними везикулами (МВ), що cекретуються/виділяються назовні. Це дослідження було започатковано концепцією, що МВ можуть робити свій внесок у здоров’я астронавтів так само, як і їхні батьківські клітини, і стати тимчасовою заміною живих мікробних клітин, поки не стане відомо більше про поведінку мікробів у космічному середовищі. Перевага МВ полягає в тому, що вони є неживими і не зазнають змін за несприятливих умов, як це може відбуватись із мікробними організмами. В якості моделі ми вибрали МВ стійкої до факторів навколишнього середовища мультимікробної культури комбучі (MКК), відомої своїми оздоровчими властивостями для людини. На початковому етапі перевірки концепції ми експонували МКК на Міжнародній космічній станції в гібридному космічному/марсоподібному середовищі.
        Під час дослідження впливу експонування ми помітили, що МКК пережила тривалий період експонування, а МВ, створені членами спільноти комбуча після польоту, не набули токсичності, незважаючи на змінений склад їх мембран після перебування в середовищі, що імітувало умови поверхні Марса. Це спостереження разом з нашими метагеномним та порівняльним геномним аналізами МКК домінантної бактерії МКК - Komagataeibacter oboediens - показали, що геноми наземного зразка та експонованого в космосі були подібними за топологією та зберігали стабільність геному. На наступному етапі ми розпочали оцінку придатності та безпеки МВ післяпольотного K. oboediens і показали, що вони були змінені, але зміни в структурі їх мембран не призвели до набуття ними цитотоксичності. Наша стратегія підтвердження концепції обговорюється в цьому огляді відповідно до даних літератури.
Ключевые слова: зміцнення здоров’я, постбіотики; екстрацеллюлярні мембранні везикули; мультимікробна культура комбуча; функціональне харчування
References: 
1. Abaci N., Senol Deniz F. S., & Orhan I.E. (2022). Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chemistry: X, 14, 100302.
2. Albright M.B.N., Louca S., Winkler D. E., Feeser K. L., Haig S.-J., Whiteson K. L., Emerson J. B., & Dunbar J. (2022). Solutions in microbiome engineering: prioritizing barriers to organism establishment. The ISME Journal, 16, 331-338. 
3. Alves N. J., Turner, K.B., Medintz I.L., & Walper, S.A. (2016). Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Scientific Reports, 6, 24866.
4. Aytar Çelik P., Derkuş B., Erdoğan K., Barut D., Blaise Manga E., Yıldırım Y., Pecha S., & Çabuk A. (2022). Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnology Advances, 54, 107869.
5. Ball N., Kagawa H., Hindupur A., Kostakis A., Hogan J., Villanueva A., et al. (2021). BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system. 50th International Conference on Environmental Systems ICES-2021-331.
6. Barbanchik, G. F. (1954). Kombucha and its medicinal properties. Omsk: Omsk Regional Book Publishing House. [in Russian]
7. Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C. C., Charles T., et al. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8, 103.
8. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050-16055.
9. Brugiroux S., Beutler M., Pfann, C., Garzetti D., Ruscheweyh H.-J., Ring D., et al. (2017). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2, 16215.
10. Cabello-Olmo M., Araña M., Urtasun R., Encio I. J., & Barajas M. (2021). Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods, 10(7), 1590.
11. Cai Q., He B., Wang S., Fletcher S., Niu D., Mitter N., et al. (2021). Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. Annual Review of Plant Biology, 72(1), 497-524.
12. Camere S., & Karana E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production, 186, 570-584.
13. Caruana J.C. & Walper S.A. (2020) Bacterial Membrane Vesicles as Mediators of Microbe - Microbe and Microbe - Host Community Interactions. Front. Microbiol. 11, 432. 
14. Champagne-Jorgensen K., Mian M. F., McVey Neufeld K.-A., Stanisz A. M., & Bienenstock J. (2021). Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Scientific Reports, 11, 13756.
15. Cooper M., Perchonok M., & Douglas G. L. (2017). Initial assessment of the nutritional quality of the space food system over three years of ambient storage. npj Microgravity, 3, 17.
16. Costa M.A.C., Vilela D.L.S., Fraiz G.M., Lopes I.L., Coelho A.I.M., Castro L.C.V., Martin J.G.P. (2021) Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: A systematic review. Critical Reviews in Food Science and Nutrition, 1-16.
17. Cruz N., Abernathy G. A., Dichosa A. E. K., & Kumar A. (2022). The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infection and Immunity, Vol. 90, no. 5.
18. Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667-685.
19. D'Accolti M., Soffritti I., Bini F., Mazziga E., Mazzacane S., & Caselli E. (2022). Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms, 10(2), 225.
20. de Vera J.-P., Alawi M., Backhaus T., Baqué M., Billi D., Böttger U., et al. (2019). Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 19(2), 145-157.
21. Dean S. N., Rimmer M. A., Turner K. B., Phillips D. A., Caruana J. C., Hervey W. J., Leary D. H., & Walper S. A. (2020). Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Frontiers in Microbiology, 11, 710.
22. Detrell G., Belz S., Fasoulas S., Helisch H., Keppler J., Henn N. et al. (2018). PBR@LSR: a hybrid life support system experiment at the ISS. NASA ADS 42, F4.2-1518 2018 [cited 2022 March 19]. Bibcode: 2018cosp...42E.819D
23. Díaz-Garrido, N., Badia, J., & Baldomà, L. (2021а). Microbiota-derived extracellular vesicles in interkingdom communication in the gut. Journal of Extracellular Vesicles, 10(13), e12161.
24. Diaz-Garrido N., Cordero C., Olivo-Martinez Y., Badia J., & Baldomà L. (2021в). Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. International Journal of Molecular Sciences, 22(4), 2213.
25. Diaz-Garrido N., Badia J., & Baldomà L. (2022). Modulation of Dendritic Cells by Microbiota Extracellular Vesicles Influences the Cytokine Profile and Exosome Cargo. Nutrients, 14(2), 344.
26. Domínguez Rubio A. P., D'Antoni C. L., Piuri M., & Pérez O. E. (2022). Probiotics, Their Extracellular Vesicles and Infectious Diseases. Frontiers in Microbiology, 13, 864720.
27. Duarte-Silva E., Oriá A. C., Mendonça I. P., de Melo M. G., Paiva I. H. R., Maes M., Joca S. R. L., & Peixoto C. A. (2022). Tiny in size, big in impact: Extracellular vesicles as modulators of mood, anxiety and neurodevelopmental disorders. Neuroscience & Biobehavioral Reviews, 135, 104582.
28. Eckburg P. B. (2005). Diversity of the Human Intestinal Microbial Flora. Science, 308(5728), 1635-1638.
29. Elshaghabee F.M.F., & Rokana N. (2022). Mitigation of antibiotic resistance using probiotics, prebiotics and synbiotics. A review. Environmental Chemistry Letters, 20(2), 1295-1308.
30. Escalante Aburto A., Trujillo de Santiago G., Álvarez M. M., & Chuck Hernández C. (2021). Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5722-5741.
31. Fábrega M.-J., Rodríguez-Nogales A., Garrido-Mesa J., Algieri F., Badía J., Giménez R., Gálvez J., & Baldomà L. (2017). Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Frontiers in Microbiology, 8, 1274.
32. Fajardo-Cavazos P., & Nicholson W. L. (2021). Shelf Life and Simulated Gastrointestinal Tract Survival of Selected Commercial Probiotics During a Simulated Round-Trip Journey to Mars. Frontiers in Microbiology, 12, 748950
33. Fang Y., Wang Z., Liu X., & Tyler B. M. (2022). Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Frontiers in Microbiology, 13, 817844.
34. Ferreiro A., Crook N., Gasparrini A. J., & Dantas G. (2018). Multiscale Evolutionary Dynamics of Host-Associated Microbiomes. Cell, 172(6), 1216-1227.
35. Gao H., Luo Z., Ji Y. et al. (2022). Accumulation of microbial DNAs promotes to islet inflammation and β cell abnormalities in obesity in mice. Nature Communications, 13(1), 565.
36. Garrett-Bakelman F. E., Darshi M., Green S. J., Gur R. C., Lin L., Macias B. R., et al. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436), eaau8650.
37. Gill S. R., Pop M., DeBoy R. T., Eckburg P. B., TurnbaughP. J., Samuel B. S., et al. (2006). Metagenomic Analysis of the Human Distal Gut Microbiome. Science, 312(5778), 1355-1359.
38. Gilmore W.J., Johnston E.L., Zavan L., Bitto N.J., & Kaparakis-Liaskos M. (2021). Immunomodulatory roles and novel applications of bacterial membrane vesicles. Molecular Immunology, 134, 72-85.
39. Góes-Neto A., Kukharenko O., Orlovska I., Podolich O., Imchen M., Kumavath R., et al (2021). Shotgun metagenomic analysis of Kombucha mutualistic community exposed to Mars‐like environment outside the International Space Station. Environmental Microbiology, 23(7), 3727-3742.
40. Gu Z., Meng S., Wang Y., Lyu B., Li P., & Shang N. (2022). A novel bioactive postbiotics: from microbiota-derived extracellular nanoparticles to health promoting. Critical Reviews in Food Science and Nutrition, 1-15.
41. Gul L., Modos D., Fonseca S., Madgwick M., Thomas J. P., Sudhakar P., et al. (2022). Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell‐type specific manner that are altered in inflammatory bowel disease. Journal of Extracellular Vesicles, 11(1), e12189.
42. Gupta R., & Raghuwanshi S. (2022). Designer Probiotics in Metabolic Disorders. In: Chopra, K., Bishnoi, M., Kondepudi, K.K. (eds) Probiotic Research in Therapeutics. Springer, Singapore. 241-260.
43. Haas-Neill S., & Forsythe P. (2020). A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 21(23), 8899.
44. Han S., Lu Y., Xie J., Fei Y., Zheng G., Wang Z., et al. (2021). Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Frontiers in Cellular and Infection Microbiology, 11, 609722.
45. Haraoui L.-P. (2022). Networked collective microbiomes and the rise of subcellular 'units of life'. Trends in Microbiology, 30(2), 112-119.
46. Jones E. J., Booth C., Fonseca S., Parker A., Cross K., Miquel-Clopés A., et al. (2020). The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Frontiers in Microbiology, 11, 57.
47. Joshi B., Singh B., Nadeem A., Askarian F., Wai S. N., Johannessen M., & Hegstad K. (2021). Transcriptome Profiling of Staphylococcus aureus Associated Extracellular Vesicles Reveals Presence of Small RNA-Cargo. Frontiers in Molecular Biosciences, 7, 566207.
48. Jung Y., Kim I., Mannaa M., Kim J., Wang S., Park I., Kim J., Seo Y. S.. (2019). Effect of Kombucha on gut-microbiota in mouse having nonalcoholic fatty liver disease. Food Science and Biotechnology, 28, 261-7.
49. Khan Mirzaei M., & Deng L. (2022). New technologies for developing phage-based tools to manipulate the human microbiome. Trends in Microbiology, 30(2), 131-142.
50. Kozyrovska N., Reva O., Podolich O., Kukharenko O., Orlovska I., Terzova V., et al. (2021). To Other Planets With Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Frontiers in Astronomy and Space Sciences, 8, 701158.
51. Kozyrovska, N. and Foing, B. (2010). Kombucha might be promising probiotics for consumption on the Moon. Abstract book COSPAR 38, 3. 38th COSPAR Scientific Assembly (Bibcode 2010cosp. 38..434K). [in English].
52. Kozyrovska N. O., Reva O. M., Goginyan V. B., & de Vera J. P. (2012). Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. Biopolymers and Cell, 28(2), 103-113.
53. Kozyrovska N., Foing B., Demets R., & de Vera J.-P. (2018). Are Postbiotics a Reasonable Alternative to Probiotics for Astronaut's Health Support, in Abstracts of the 18th Ukrainian conference on Space Research, 2018, Kiev, Ukraine, September 17-20, 2018, 65. [in English].
54. Kuehnast T., Abbott C., Pausan M. R., Pearce D. A., Moissl-Eichinger C., & Mahnert A. (2022). The crewed journey to Mars and its implications for the human microbiome. Microbiome, 10, 26.
55. Ladinsky M. S., Araujo L. P., Zhang X., Veltri J., Galan-Diez M., Soualhi S., et al. (2019). Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 36f3(6431), eaat4042.
56. Lee J.A. et al. (2022). Microbial food safety in space production systems A white paper submitted to the Decadal Survey on Biological and Physical Sciences Research in Space 2023-2032 NASA.
57. Lencner A. A., Lencner C. P., Mikelsaar M. E., Tjuri M. E., Toom M. A., Väljaots M. E., et al. (1984). Die quantitative Zusammensetzung der Lactoflora des Verdauungstrakts vor und nach kosmischen Flügen unterschiedlicher Dauer. Food/Nahrung, 28(6-7), 607-613.
58. Lewandowski K., & Stryjska A. (2022). What food will we be eating on our journey to Mars? Biotechnology & Biotechnological Equipment, 36(1), 165-175.
59. Liebana-Jordan M., Brotons B., Falcon-Perez J. M., & Gonzalez E. (2021). Extracellular Vesicles in the Fungi Kingdom. International Journal of Molecular Sciences, 22(13), 7221.
60. Liu H., Yao Z., Fu Y., & Feng J. (2021). Review of research into bioregenerative life support system(s) which can support humans living in space. Life Sciences in Space Research. 31,113-120.
61. Liu Y., Tempelaars M. H., Boeren S., Alexeeva S., Smid E. J., & Abee T. (2022). Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage‐encoded holin-lysin system. Microbial Biotechnology, 15(4), 1281-1295.
62. Liu Z., Luo G., Du R., Sun W., Li J., Lan H., et al. (2020). Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes, 11(4), 807-819.
63. Maldonado Galdeano C., Cazorla S. I., Lemme Dumit J. M., Vélez E., & Perdigón G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism, 74(2), 115-124.
64. Mathipa-Mdakane M. G., & Thantsha M. S. (2022). Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods, 11(6), 785.
65. Mhalaskar S., Phad O., Phadtare N. (2021). Space Food and Beverage. FASJ. 02(01):57-.
66. Mitchell C. A. (1994). Bioregenerative life-support systems. The American Journal of Clinical Nutrition, 60(5), 820S-824S.
67. Morreale C., Bresesti I., Bosi A., Baj A., Giaroni C., Agosti M., & Salvatore S. (2022). Microbiota and Pain: Save Your Gut Feeling. Cells, 11(6), 971.
68. Morrison M. D., Thissen J. B., Karouia F., Mehta S., Urbaniak C., Venkateswaran K., et al. (2021). Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Frontiers in Microbiology, 12, 659179.
69. Pirolli N. H., Bentley W. E., & Jay S. M. (2021). Bacterial Extracellular Vesicles and the Gut‐Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Advanced Biology, 5(7), 2000540.
70. Podolich O., Kukharenko O., Haidak A., Zaets I., Zaika L., Storozhuk O., et al.(2019). Multimicrobial Kombucha Culture Tolerates Mars-like Conditions Simulated on Low Earth Orbit. Astrobiology, 19(2), 183-196.
71. Podolich O., Kukharenko O., Zaets I., Orlovska I., Palchykovska L., Zaika L., et al. (2020). Fitness of Outer Membrane Vesicles From Komagataeibacter intermedius Is Altered Under the Impact of Simulated Mars-like Stressors Outside the International Space Station. Frontiers in Microbiology, 11, 1268.
72. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.
73. Rodovalho V. d. R., Luz B. S. R. d., Rabah H., do Carmo F. L. R., Folador E. L., Nicolas A., et al. (2020). Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Frontiers in Microbiology, 11, 1544.
74. Sabatino R., Sbaffi T., Corno G., de Carvalho D.S., Uetanabaro A.P.T., Góes-Neto A., et al. (2022). Metagenome analysis reveals a response of the antibiotic resistome to Mars-like extraterrestrial conditions, Astrobiology. 22 (10).
75. Sahr T., Escoll P., Rusniok C., Bui S., Pehau-Arnaudet G., Lavieu G., & Buchrieser, C. (2022). Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response. Nature Communications, 13(1), 762.
76. Salminen S., Collado M. C., Endo A., Hill C., Lebeer S., Quigley E. M. M., et al. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667.
77. Samuel M., Bleackley M., Anderson M., & Mathivanan S. (2015). Extracellular vesicles including exosomes in cross kingdom regulation: a viewpoint from plant-fungal interactions. Frontiers in Plant Science, 6, 766.
78. Santana de Carvalho D., Trovatti Uetanabaro A. P., Kato R. B., Aburjaile F. F., Jaiswal A. K., Profeta R., et al. (2022). The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Frontiers in Microbiology, 13, 782175.
79. Sartorio M. G., Pardue E. J., Feldman M. F., & Haurat M. F. (2021). Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annual Review of Microbiology, 75, 609-630.
80. Siddiqui R., Akbar N., & Khan N. A. (2020). Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 130(1), 14-24.
81. Stanton B.A. (2021) Extracellular Vesicles and Host-Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes, 12(7), 1010.
82. Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., et al. (2018). Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 174(6), 1406-1423.e16.
83. Szlufman C., & Shemesh M. (2021). Role of Probiotic Bacilli in Developing Synbiotic Food: Challenges and Opportunities. Frontiers in Microbiology, 12, 638830.
84. Taur Y., Coyte K., Schluter J., Robilotti E., Figueroa C., Gjonbalaj M., et al. (2018). Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10(460), eaap9489.
85. Tesei D., Jewczynko A., Lynch A., & Urbaniak C. (2022). Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 12(4), 495.
86. Thapa S.P., Koirala S., Anal A.K. (2022). Book Editor(s):Parmjit Singh Panesar, Anil Kumar Anal. Potential of Probiotics as Alternative Sources for Antibiotics in Food Production Systems. First published: 07 January 2022.
87. Théry C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.
88. Turroni S., Magnani M., KC P., Lesnik P., Vidal H., & Heer M. (2020). Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in Physiology, 11, 553929.
89. Vargas B. K., Fabricio M. F., & Záchia Ayub M. A. (2021). Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Bioscience, 44 (5A), 101332.
90. Voorhies A. A., Mark Ott, C., Mehta S., Pierson D. L., Crucian B. E., Feiveson A., Oubre C. M., et al. (2019). Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Scientific Reports, 9, 9911.
91. Wang J.W., Kuo C.H., Kuo F.C., Wang Y.K., Hsu W.H., et al.. (2019). Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019 Mar;118 Suppl 1:S23-S31.
92. Wang P., Feng Z., Sang X., Chen W., Zhang X., Xiao J. et al. (2021). Kombucha ameliorates LPS-induced sepsis in a mouse model. Food & Function, 12, 10263-10280.
93. Watkins P., Hughes J., Gamage T. V., Knoerzer K., Ferlazzo M. L., & Banati R. B. (2022). Long term food stability for extended space missions: a review. Life Sciences in Space Research, 32, 79-95.
94. Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G. & Belzer C. (2019). Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International Journal of Molecular Sciences, 20(19), 4673.
95. Wieërs G., Verbelen V., Van Den Driessche M., Melnik E., Vanheule G., Marot J.-C., & Cani P. D. (2021). Do Probiotics During In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota With Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing Saccharomyces to a Mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Frontiers in Public Health, 8, 578089.
96. Xu S., Wang Y., Wang J., Geng W. (2022). Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods. 11(5), 754.
97. Yan F., & Polk D. B. (2011). Probiotics and immune health. Current Opinion in Gastroenterology, 27(6), 496-501.
98. Zawistowska-Rojek A., & Tyski S. (2022). How to Improve Health with Biological Agents-Narrative Review. Nutrients, 14(9), 1700.