The conceptual approach to the use of postbiotics based on bacterial membrane nanovesicles for prophylaxis of astronauts' health disorders
1Orlovska, I, 1Podolich, O, 1Kukharenko, O, 1Zubova, G, 2Reva, O, 3Di Cesare, A, 4Goes-Neto, A, 5Azevedo, V, 6Barh, D, 7de Vera, J-P, 1Kozyrovska, N 1Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine 2Pretoria University, Bioinformatics Сenter, Pretoria, South Africa 3National Research Council of Italy-Water Research Institute (CNR-IRSA), Corso Tonolli, Verbania, Italy 4Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Bairro Salobrinho Ilhéus, Brazil 5Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil 6Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, India 7Microgravity User Support Center, German Aerospace Center (DLR), Linder Höhe, Cologne, Germany |
Space Sci. & Technol. 2022, 28 ;(6):34-51 |
https://doi.org/10.15407/knit2022.06.034 |
Язык публикации: English |
Аннотация: The functional fermented foods containing live microorganisms and their components are necessary for the normal functioning of the human body as normal gut microbiota needs fuel from external microbial organisms and their nanostructures - membrane vesicles (MVs), excreting outside. The сoncept that MVs may contribute to astronauts' health probably to the same extent as their parental microbial cells do and be a temporary substitute for living microbial cells until we know more about the behavior of microbes in the space environment. The advantage of MVs is that they are not alive and cannot be changed under unfavorable conditions as microbial organisms may be. As the model, we selected MVs of a robust to environmental factors kombucha multimicrobial culture (KMC), known for its health-promoting characteristics for humans.
We exposed KMC on the International Space Station in a hybrid space/Mars-like environment for an initial proof-of-concept stage. In the exposure study, KMC has survived a long-term period in harsh conditions, and the MVs generated by post-flight kombucha community members did not acquire toxicity, despite the changed membrane composition in the environment imitated conditions on the Mars surface. This observation, together with our KMC metagenomic and comparative genomic analyses of the dominant KMC bacterium Komagataeibacter oboediens, showed that the ground reference sample and space-exposed ones were similar in topology and maintained their stability. In the next stage, we assessed the fitness, safety, and biodistribution of MVs of post-flight K. oboediens and showed that they were altered, but the modifications in membrane structure did not result in toxicity acquisition. Our proof-of-concept strategy is discussed in this review in line with the literature.
|
Ключевые слова: health promotion, postbiotics; extracellular membrane vesicles; kombucha multimicrobial culture; fermented food |
1. Abaci N., Senol Deniz F. S., & Orhan I.E. (2022). Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chemistry: X, 14, 100302.
https://doi.org/10.1016/j.fochx.2022.100302
2. Albright M.B.N., Louca S., Winkler D. E., Feeser K. L., Haig S.-J., Whiteson K. L., Emerson J. B., & Dunbar J. (2022). Solutions in microbiome engineering: prioritizing barriers to organism establishment. The ISME Journal, 16, 331-338.
https://doi.org/10.1038/s41396-021-01088-5
3. Alves N. J., Turner, K.B., Medintz I.L., & Walper, S.A. (2016). Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Scientific Reports, 6, 24866.
https://doi.org/10.1038/srep24866
4. Aytar Çelik P., Derkuş B., Erdoğan K., Barut D., Blaise Manga E., Yıldırım Y., Pecha S., & Çabuk A. (2022). Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnology Advances, 54, 107869.
https://doi.org/10.1016/j.biotechadv.2021.107869
5. Ball N., Kagawa H., Hindupur A., Kostakis A., Hogan J., Villanueva A., et al. (2021). BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system. 50th International Conference on Environmental Systems ICES-2021-331.
Available at: https://ttu-ir.tdl.org/bitstream/handle/2346/87260/ICES-2021-331.pdf?seq... [in English]
6. Barbanchik, G. F. (1954). Kombucha and its medicinal properties. Omsk: Omsk Regional Book Publishing House. [in Russian]
7. Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C. C., Charles T., et al. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8, 103.
https://doi.org/10.1186/s40168-020-00875-0
8. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050-16055.
https://doi.org/10.1073/pnas.1102999108
9. Brugiroux S., Beutler M., Pfann, C., Garzetti D., Ruscheweyh H.-J., Ring D., et al. (2017). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2, 16215.
https://doi.org/10.1038/nmicrobiol.2016.215
10. Cabello-Olmo M., Araña M., Urtasun R., Encio I. J., & Barajas M. (2021). Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods, 10(7), 1590.
https://doi.org/10.3390/foods10071590
11. Cai Q., He B., Wang S., Fletcher S., Niu D., Mitter N., et al. (2021). Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. Annual Review of Plant Biology, 72(1), 497-524.
https://doi.org/10.1146/annurev-arplant-081720-010616
12. Camere S., & Karana E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production, 186, 570-584.
https://doi.org/10.1016/j.jclepro.2018.03.081
13. Caruana J.C. & Walper S.A. (2020) Bacterial Membrane Vesicles as Mediators of Microbe - Microbe and Microbe - Host Community Interactions. Front. Microbiol. 11, 432.
https://doi.org/10.3389/fmicb.2020.00432
14. Champagne-Jorgensen K., Mian M. F., McVey Neufeld K.-A., Stanisz A. M., & Bienenstock J. (2021). Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Scientific Reports, 11, 13756.
https://doi.org/10.1038/s41598-021-93311-8
15. Cooper M., Perchonok M., & Douglas G. L. (2017). Initial assessment of the nutritional quality of the space food system over three years of ambient storage. npj Microgravity, 3, 17.
https://doi.org/10.1038/s41526-017-0022-z
16. Costa M.A.C., Vilela D.L.S., Fraiz G.M., Lopes I.L., Coelho A.I.M., Castro L.C.V., Martin J.G.P. (2021) Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: A systematic review. Critical Reviews in Food Science and Nutrition, 1-16.
https://doi.org/10.1080/10408398.2021.1995321
17. Cruz N., Abernathy G. A., Dichosa A. E. K., & Kumar A. (2022). The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infection and Immunity, Vol. 90, no. 5.
https://doi.org/10.1128/iai.00589-21
18. Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667-685.
https://doi.org/10.1016/j.tim.2021.01.003
19. D'Accolti M., Soffritti I., Bini F., Mazziga E., Mazzacane S., & Caselli E. (2022). Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms, 10(2), 225.
https://doi.org/10.3390/microorganisms10020225
20. de Vera J.-P., Alawi M., Backhaus T., Baqué M., Billi D., Böttger U., et al. (2019). Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 19(2), 145-157.
https://doi.org/10.1089/ast.2018.1897
21. Dean S. N., Rimmer M. A., Turner K. B., Phillips D. A., Caruana J. C., Hervey W. J., Leary D. H., & Walper S. A. (2020). Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Frontiers in Microbiology, 11, 710.
https://doi.org/10.3389/fmicb.2020.00710
22. Detrell G., Belz S., Fasoulas S., Helisch H., Keppler J., Henn N. et al. (2018). PBR@LSR: a hybrid life support system experiment at the ISS. NASA ADS 42, F4.2-1518 2018 [cited 2022 March 19]. Bibcode: 2018cosp...42E.819D
Available at: https://ui.adsabs.harvard.edu/abs/2018cosp...42E.819D/abstract. [in English]
23. Díaz-Garrido, N., Badia, J., & Baldomà, L. (2021а). Microbiota-derived extracellular vesicles in interkingdom communication in the gut. Journal of Extracellular Vesicles, 10(13), e12161.
https://doi.org/10.1002/jev2.12161
24. Diaz-Garrido N., Cordero C., Olivo-Martinez Y., Badia J., & Baldomà L. (2021в). Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. International Journal of Molecular Sciences, 22(4), 2213.
https://doi.org/10.3390/ijms22042213
25. Diaz-Garrido N., Badia J., & Baldomà L. (2022). Modulation of Dendritic Cells by Microbiota Extracellular Vesicles Influences the Cytokine Profile and Exosome Cargo. Nutrients, 14(2), 344.
https://doi.org/10.3390/nu14020344
26. Domínguez Rubio A. P., D'Antoni C. L., Piuri M., & Pérez O. E. (2022). Probiotics, Their Extracellular Vesicles and Infectious Diseases. Frontiers in Microbiology, 13, 864720.
https://doi.org/10.3389/fmicb.2022.864720
27. Duarte-Silva E., Oriá A. C., Mendonça I. P., de Melo M. G., Paiva I. H. R., Maes M., Joca S. R. L., & Peixoto C. A. (2022). Tiny in size, big in impact: Extracellular vesicles as modulators of mood, anxiety and neurodevelopmental disorders. Neuroscience & Biobehavioral Reviews, 135, 104582.
https://doi.org/10.1016/j.neubiorev.2022.104582
28. Eckburg P. B. (2005). Diversity of the Human Intestinal Microbial Flora. Science, 308(5728), 1635-1638.
https://doi.org/10.1126/science.1110591
29. Elshaghabee F.M.F., & Rokana N. (2022). Mitigation of antibiotic resistance using probiotics, prebiotics and synbiotics. A review. Environmental Chemistry Letters, 20(2), 1295-1308.
https://doi.org/10.1007/s10311-021-01382-w
30. Escalante Aburto A., Trujillo de Santiago G., Álvarez M. M., & Chuck Hernández C. (2021). Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5722-5741.
https://doi.org/10.1111/1541-4337.12849
31. Fábrega M.-J., Rodríguez-Nogales A., Garrido-Mesa J., Algieri F., Badía J., Giménez R., Gálvez J., & Baldomà L. (2017). Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Frontiers in Microbiology, 8, 1274.
https://doi.org/10.3389/fmicb.2017.01274
32. Fajardo-Cavazos P., & Nicholson W. L. (2021). Shelf Life and Simulated Gastrointestinal Tract Survival of Selected Commercial Probiotics During a Simulated Round-Trip Journey to Mars. Frontiers in Microbiology, 12, 748950
https://doi.org/10.3389/fmicb.2021.748950
33. Fang Y., Wang Z., Liu X., & Tyler B. M. (2022). Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Frontiers in Microbiology, 13, 817844.
https://doi.org/10.3389/fmicb.2022.817844
34. Ferreiro A., Crook N., Gasparrini A. J., & Dantas G. (2018). Multiscale Evolutionary Dynamics of Host-Associated Microbiomes. Cell, 172(6), 1216-1227.
https://doi.org/10.1016/j.cell.2018.02.015
35. Gao H., Luo Z., Ji Y. et al. (2022). Accumulation of microbial DNAs promotes to islet inflammation and β cell abnormalities in obesity in mice. Nature Communications, 13(1), 565.
36. Garrett-Bakelman F. E., Darshi M., Green S. J., Gur R. C., Lin L., Macias B. R., et al. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436), eaau8650.
https://doi.org/10.1126/science.aau8650
37. Gill S. R., Pop M., DeBoy R. T., Eckburg P. B., TurnbaughP. J., Samuel B. S., et al. (2006). Metagenomic Analysis of the Human Distal Gut Microbiome. Science, 312(5778), 1355-1359.
https://doi.org/10.1126/science.1124234
38. Gilmore W.J., Johnston E.L., Zavan L., Bitto N.J., & Kaparakis-Liaskos M. (2021). Immunomodulatory roles and novel applications of bacterial membrane vesicles. Molecular Immunology, 134, 72-85.
https://doi.org/10.1016/j.molimm.2021.02.027
39. Góes-Neto A., Kukharenko O., Orlovska I., Podolich O., Imchen M., Kumavath R., et al (2021). Shotgun metagenomic analysis of Kombucha mutualistic community exposed to Mars‐like environment outside the International Space Station. Environmental Microbiology, 23(7), 3727-3742.
https://doi.org/10.1111/1462-2920.15405
40. Gu Z., Meng S., Wang Y., Lyu B., Li P., & Shang N. (2022). A novel bioactive postbiotics: from microbiota-derived extracellular nanoparticles to health promoting. Critical Reviews in Food Science and Nutrition, 1-15.
https://doi.org/10.1080/10408398.2022.2039897
41. Gul L., Modos D., Fonseca S., Madgwick M., Thomas J. P., Sudhakar P., et al. (2022). Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell‐type specific manner that are altered in inflammatory bowel disease. Journal of Extracellular Vesicles, 11(1), e12189.
https://doi.org/10.1002/jev2.12189
42. Gupta R., & Raghuwanshi S. (2022). Designer Probiotics in Metabolic Disorders. In: Chopra, K., Bishnoi, M., Kondepudi, K.K. (eds) Probiotic Research in Therapeutics. Springer, Singapore. 241-260.
https://doi.org/10.1007/978-981-16-8444-9_12
43. Haas-Neill S., & Forsythe P. (2020). A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 21(23), 8899.
https://doi.org/10.3390/ijms21238899
44. Han S., Lu Y., Xie J., Fei Y., Zheng G., Wang Z., et al. (2021). Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Frontiers in Cellular and Infection Microbiology, 11, 609722.
https://doi.org/10.3389/fcimb.2021.609722
45. Haraoui L.-P. (2022). Networked collective microbiomes and the rise of subcellular 'units of life'. Trends in Microbiology, 30(2), 112-119.
https://doi.org/10.1016/j.tim.2021.09.011
46. Jones E. J., Booth C., Fonseca S., Parker A., Cross K., Miquel-Clopés A., et al. (2020). The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Frontiers in Microbiology, 11, 57.
https://doi.org/10.3389/fmicb.2020.00057
47. Joshi B., Singh B., Nadeem A., Askarian F., Wai S. N., Johannessen M., & Hegstad K. (2021). Transcriptome Profiling of Staphylococcus aureus Associated Extracellular Vesicles Reveals Presence of Small RNA-Cargo. Frontiers in Molecular Biosciences, 7, 566207.
https://doi.org/10.3389/fmolb.2020.566207
48. Jung Y., Kim I., Mannaa M., Kim J., Wang S., Park I., Kim J., Seo Y. S.. (2019). Effect of Kombucha on gut-microbiota in mouse having nonalcoholic fatty liver disease. Food Science and Biotechnology, 28, 261-7.
https://doi.org/10.1007/s10068-018-0433-y
49. Khan Mirzaei M., & Deng L. (2022). New technologies for developing phage-based tools to manipulate the human microbiome. Trends in Microbiology, 30(2), 131-142.
https://doi.org/10.1016/j.tim.2021.04.007
50. Kozyrovska N., Reva O., Podolich O., Kukharenko O., Orlovska I., Terzova V., et al. (2021). To Other Planets With Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Frontiers in Astronomy and Space Sciences, 8, 701158.
https://doi.org/10.3389/fspas.2021.701158
51. Kozyrovska, N. and Foing, B. (2010). Kombucha might be promising probiotics for consumption on the Moon. Abstract book COSPAR 38, 3. 38th COSPAR Scientific Assembly (Bibcode 2010cosp. 38..434K). [in English].
52. Kozyrovska N. O., Reva O. M., Goginyan V. B., & de Vera J. P. (2012). Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. Biopolymers and Cell, 28(2), 103-113.
https://doi.org/10.7124/bc.000034
53. Kozyrovska N., Foing B., Demets R., & de Vera J.-P. (2018). Are Postbiotics a Reasonable Alternative to Probiotics for Astronaut's Health Support, in Abstracts of the 18th Ukrainian conference on Space Research, 2018, Kiev, Ukraine, September 17-20, 2018, 65. [in English].
54. Kuehnast T., Abbott C., Pausan M. R., Pearce D. A., Moissl-Eichinger C., & Mahnert A. (2022). The crewed journey to Mars and its implications for the human microbiome. Microbiome, 10, 26.
https://doi.org/10.1186/s40168-021-01222-7
55. Ladinsky M. S., Araujo L. P., Zhang X., Veltri J., Galan-Diez M., Soualhi S., et al. (2019). Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 36f3(6431), eaat4042.
https://doi.org/10.1126/science.aat4042
56. Lee J.A. et al. (2022). Microbial food safety in space production systems A white paper submitted to the Decadal Survey on Biological and Physical Sciences Research in Space 2023-2032 NASA.
https://ntrs.nasa.gov/api/citations/20210023206/downloads/Lee_MicrobialF.... [in English]
57. Lencner A. A., Lencner C. P., Mikelsaar M. E., Tjuri M. E., Toom M. A., Väljaots M. E., et al. (1984). Die quantitative Zusammensetzung der Lactoflora des Verdauungstrakts vor und nach kosmischen Flügen unterschiedlicher Dauer. Food/Nahrung, 28(6-7), 607-613.
https://doi.org/10.1002/food.19840280608
58. Lewandowski K., & Stryjska A. (2022). What food will we be eating on our journey to Mars? Biotechnology & Biotechnological Equipment, 36(1), 165-175.
https://doi.org/10.1080/13102818.2022.2060135
59. Liebana-Jordan M., Brotons B., Falcon-Perez J. M., & Gonzalez E. (2021). Extracellular Vesicles in the Fungi Kingdom. International Journal of Molecular Sciences, 22(13), 7221.
https://doi.org/10.3390/ijms22137221
60. Liu H., Yao Z., Fu Y., & Feng J. (2021). Review of research into bioregenerative life support system(s) which can support humans living in space. Life Sciences in Space Research. 31,113-120.
https://doi.org/10.1016/j.lssr.2021.09.003
61. Liu Y., Tempelaars M. H., Boeren S., Alexeeva S., Smid E. J., & Abee T. (2022). Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage‐encoded holin-lysin system. Microbial Biotechnology, 15(4), 1281-1295.
https://doi.org/10.1111/1751-7915.13972
62. Liu Z., Luo G., Du R., Sun W., Li J., Lan H., et al. (2020). Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes, 11(4), 807-819.
https://doi.org/10.1080/19490976.2019.1710091
63. Maldonado Galdeano C., Cazorla S. I., Lemme Dumit J. M., Vélez E., & Perdigón G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism, 74(2), 115-124.
https://doi.org/10.1159/000496426
64. Mathipa-Mdakane M. G., & Thantsha M. S. (2022). Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods, 11(6), 785.
https://doi.org/10.3390/foods11060785
65. Mhalaskar S., Phad O., Phadtare N. (2021). Space Food and Beverage. FASJ. 02(01):57-.
Available From https://fasj.org/index.php/fasj/article/view. [in English]
66. Mitchell C. A. (1994). Bioregenerative life-support systems. The American Journal of Clinical Nutrition, 60(5), 820S-824S.
https://doi.org/10.1093/ajcn/60.5.820S
67. Morreale C., Bresesti I., Bosi A., Baj A., Giaroni C., Agosti M., & Salvatore S. (2022). Microbiota and Pain: Save Your Gut Feeling. Cells, 11(6), 971.
https://doi.org/10.3390/cells11060971
68. Morrison M. D., Thissen J. B., Karouia F., Mehta S., Urbaniak C., Venkateswaran K., et al. (2021). Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Frontiers in Microbiology, 12, 659179.
https://doi.org/10.3389/fmicb.2021.659179
69. Pirolli N. H., Bentley W. E., & Jay S. M. (2021). Bacterial Extracellular Vesicles and the Gut‐Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Advanced Biology, 5(7), 2000540.
https://doi.org/10.1002/adbi.202000540
70. Podolich O., Kukharenko O., Haidak A., Zaets I., Zaika L., Storozhuk O., et al.(2019). Multimicrobial Kombucha Culture Tolerates Mars-like Conditions Simulated on Low Earth Orbit. Astrobiology, 19(2), 183-196.
https://doi.org/10.1089/ast.2017.1746
71. Podolich O., Kukharenko O., Zaets I., Orlovska I., Palchykovska L., Zaika L., et al. (2020). Fitness of Outer Membrane Vesicles From Komagataeibacter intermedius Is Altered Under the Impact of Simulated Mars-like Stressors Outside the International Space Station. Frontiers in Microbiology, 11, 1268.
https://doi.org/10.3389/fmicb.2020.01268
72. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.
https://doi.org/10.1038/nature08821
73. Rodovalho V. d. R., Luz B. S. R. d., Rabah H., do Carmo F. L. R., Folador E. L., Nicolas A., et al. (2020). Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Frontiers in Microbiology, 11, 1544.
https://doi.org/10.3389/fmicb.2020.01544
74. Sabatino R., Sbaffi T., Corno G., de Carvalho D.S., Uetanabaro A.P.T., Góes-Neto A., et al. (2022). Metagenome analysis reveals a response of the antibiotic resistome to Mars-like extraterrestrial conditions, Astrobiology. 22 (10).
https://doi.org/10.1089/ast.2021.0176
75. Sahr T., Escoll P., Rusniok C., Bui S., Pehau-Arnaudet G., Lavieu G., & Buchrieser, C. (2022). Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response. Nature Communications, 13(1), 762.
https://doi.org/10.1038/s41467-022-28454-x
76. Salminen S., Collado M. C., Endo A., Hill C., Lebeer S., Quigley E. M. M., et al. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667.
https://doi.org/10.1038/s41575-021-00440-6
77. Samuel M., Bleackley M., Anderson M., & Mathivanan S. (2015). Extracellular vesicles including exosomes in cross kingdom regulation: a viewpoint from plant-fungal interactions. Frontiers in Plant Science, 6, 766.
https://doi.org/10.3389/fpls.2015.00766
78. Santana de Carvalho D., Trovatti Uetanabaro A. P., Kato R. B., Aburjaile F. F., Jaiswal A. K., Profeta R., et al. (2022). The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Frontiers in Microbiology, 13, 782175.
https://doi.org/10.3389/fmicb.2022.782175
79. Sartorio M. G., Pardue E. J., Feldman M. F., & Haurat M. F. (2021). Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annual Review of Microbiology, 75, 609-630.
https://doi.org/10.1146/annurev-micro-052821-031444
80. Siddiqui R., Akbar N., & Khan N. A. (2020). Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 130(1), 14-24.
https://doi.org/10.1111/jam.14789
81. Stanton B.A. (2021) Extracellular Vesicles and Host-Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes, 12(7), 1010.
https://doi.org/10.3390/genes12071010
82. Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., et al. (2018). Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 174(6), 1406-1423.e16.
https://doi.org/10.1016/j.cell.2018.08.047
83. Szlufman C., & Shemesh M. (2021). Role of Probiotic Bacilli in Developing Synbiotic Food: Challenges and Opportunities. Frontiers in Microbiology, 12, 638830.
https://doi.org/10.3389/fmicb.2021.638830
84. Taur Y., Coyte K., Schluter J., Robilotti E., Figueroa C., Gjonbalaj M., et al. (2018). Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10(460), eaap9489.
https://doi.org/10.1126/scitranslmed.aap9489
85. Tesei D., Jewczynko A., Lynch A., & Urbaniak C. (2022). Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 12(4), 495.
https://doi.org/10.3390/life12040495
86. Thapa S.P., Koirala S., Anal A.K. (2022). Book Editor(s):Parmjit Singh Panesar, Anil Kumar Anal. Potential of Probiotics as Alternative Sources for Antibiotics in Food Production Systems. First published: 07 January 2022.
https://doi.org/10.1002/9781119702160.ch8
87. Théry C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.
https://doi.org/10.1080/20013078.2018.1535750
88. Turroni S., Magnani M., KC P., Lesnik P., Vidal H., & Heer M. (2020). Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in Physiology, 11, 553929.
https://doi.org/10.3389/fphys.2020.553929
89. Vargas B. K., Fabricio M. F., & Záchia Ayub M. A. (2021). Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Bioscience, 44 (5A), 101332.
https://doi.org/10.1016/j.fbio.2021.101332
90. Voorhies A. A., Mark Ott, C., Mehta S., Pierson D. L., Crucian B. E., Feiveson A., Oubre C. M., et al. (2019). Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Scientific Reports, 9, 9911.
https://doi.org/10.1038/s41598-019-46303-8
91. Wang J.W., Kuo C.H., Kuo F.C., Wang Y.K., Hsu W.H., et al.. (2019). Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019 Mar;118 Suppl 1:S23-S31.
https://doi.org/10.1016/j.jfma.2018.08.011
92. Wang P., Feng Z., Sang X., Chen W., Zhang X., Xiao J. et al. (2021). Kombucha ameliorates LPS-induced sepsis in a mouse model. Food & Function, 12, 10263-10280.
https://doi.org/10.1039/D1FO01839F
93. Watkins P., Hughes J., Gamage T. V., Knoerzer K., Ferlazzo M. L., & Banati R. B. (2022). Long term food stability for extended space missions: a review. Life Sciences in Space Research, 32, 79-95.
https://doi.org/10.1016/j.lssr.2021.12.003
94. Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G. & Belzer C. (2019). Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International Journal of Molecular Sciences, 20(19), 4673.
https://doi.org/10.3390/ijms20194673
95. Wieërs G., Verbelen V., Van Den Driessche M., Melnik E., Vanheule G., Marot J.-C., & Cani P. D. (2021). Do Probiotics During In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota With Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing Saccharomyces to a Mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Frontiers in Public Health, 8, 578089.
https://doi.org/10.3389/fpubh.2020.578089
96. Xu S., Wang Y., Wang J., Geng W. (2022). Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods. 11(5), 754.
https://doi.org/10.3390/foods11050754
97. Yan F., & Polk D. B. (2011). Probiotics and immune health. Current Opinion in Gastroenterology, 27(6), 496-501.
https://doi.org/10.1097/MOG.0b013e32834baa4d
98. Zawistowska-Rojek A., & Tyski S. (2022). How to Improve Health with Biological Agents-Narrative Review. Nutrients, 14(9), 1700.
https://doi.org/10.3390/nu14091700