Lightning in the Earth’s atmosphere

1Gala, IV, 1Kozak, LV
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(3):18–26
https://doi.org/10.15407/knit2015.03.018
Section: Space and Atmospheric Physics
Publication Language: Ukrainian
Abstract: 

The paper analyzes the problematic topics of lightning physics, i. e., the energy of storm cloud formation and conditions for the origin of discharge. In analyzing the mechanisms of formation of a storm cloud, we pointed to the specific role of ascending and convective processes, condensation nuclei, and high-energy particles in these processes. Conditions of appearance of lightning discharges in the clouds depending on the electric field intensity are considered. Cosmic rays of high energy and break-through on runaway electrons are shown to be of importance in this phenomenon. Considerable attention was given to the determination of the conditions necessary for the appearance of such a break-through, including storm cloud size and energy of inoculating fast electrons; the energy of such electrons has to exceed 1014 eV for cloud-ground lightnings and 1012 eV for cloud-cloud ones. In addition, the value of the current change in the break-through is analyzed for two “engineering” models, namely, model of Cho-Raycfort and model of Stekolnikov. We have found that the model of Cho-Raycfort can be used for describing the break-through characteristics in high-altitude lightning discharges, and the model of Stekolnikov describes well the cloud-to-ground lightning discharges.

Keywords: conditions of break-through, cosmic rays of high energy, high-altitude lightning, lightning in the atmosphere, the formation of storm clouds
References: 

1.  Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere Handbook, 510 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
2.  Gurevich A. V., Zybin K. P. Runaway breakdown and electric discharges in thunderstorms. Advances in Physical Sciences.  171(11), 1177—1199 (2001) [in Russian].
3.  Marchuk G. I., Kondrat'ev K. Ja., Kozoderov V. V., Hvorost'janov V. I. Clouds and climate (Oblaka i klimat), 512 p. (Gidrometeoizdat, Leningrad, 1986) [in Russian].
4.  Matveev L. T. General meteorology. Atmospheric Physics (Obshhaja meteorologija. Fizika atmosfery, 751 p. (Gidrometeoizdat, Leningrad, 1984) [in Russian].
5.  Murzin V. S. Introduction to the physics of cosmic rays (Vvedenie v fiziku kosmicheskih luchej), 319 p. (MGU, Moscow, 1988) [in Russian].
6.  Mazin I.P., Khrgian A.Kh. (Eds.) Handbook of Clouds and Cloudy Atmosphere, 647 p.  (Gidrometeoizdat, Leningrad, 1989) [in Russian].
7.  Rajzer Ju. P. Physics of gas discharge (Fizika gazovogo razrjada),  736 p. (ID Intellekt, Moscow, 2009) [in Russian].
8.  Stekol'nikov I. S. The physics of lightning and surge protection (Fizika molnii i grozozashhita), 230 p. (AN SSSR, Moscow; Leningrad, 1943) [in Russian].
9. Shuyenko O.V., Kozak L.V., Ivchenko V.M. Transient luminous events during thunderstorms and the simulation of electric fields in the lower atmosphere. Kosm. nauka tehnol., 16(2), 23—34 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.02.023
10. Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 397(3), 325—400 (1930) [in German]
11. Blanc E., Farges T., Roche R., Brebion D., Hua T., Labarthe A., Melnikov V. Nadir observations of sprites from the International Space Station.  J. Geophys. Res.: Space Phys.  109, A02306, (2004)
.https://doi.org/10.1029/2003JA009972
12. Bruce C. E. R., Golde R. H. The lightning discharge.  J. Inst. Electr. Eng.  88, 487—520 (1941).
13. Cho M., Raycroft M. J. Computer simulation of the electric field structure and optical emission from cloud top to the ionosphere.  J. Atmos. Solar Terr. Phys60,  871—888 (1998).
14. Gurevich A. V., Milikh G. A., Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm.  Phys. Lett. A.  165 (5–6), 463—468 (1992).
15. MacGorman D. R., Rust W. D. The Electrical Nature of Storms.  600 p. (Oxford Univ. Press, New York, 1998).
16. Pasko V. P., Stanley M. A., Mathews J. D., et al. Electrical discharge from a thunderstorm top to the lower ionosphere.  Nature. 416,  152—154 (2002).
https://doi.org/10.1038/416152a
17. Rakov V. A., Uman M. Lightning physics and effects. 687 p. (Univ. Press,  Cambridge UK, 2003).
18. Rakov V. A., Uman M. A., Rambo K. J. A review of ten years of triggered-lightning experiments at Camp Blanding, Florida.  Atmos. Res. 76 (1–4), 504—518 (2005).
19. Fül le krug M., Mareev E. A., Rycroft M. J.  (Eds.) Sprites, elves and intense lightning discharges.  Nato Sci. Ser. II225, 398 p. (2006).
20. Uman M. A. The art and science of lightning protection. 239 p. (Univ. Press, Cambridge, 2008).
21. Wescott E. M., Sentman D. D., Stenbaek-Nielsen H. C., et al. New evidence for the brightness and ionisation of blue starters and blue jets.  J. Geophys. Res.: Space Phys. 106, N A10, P. 21549—P. 21554 (2001).
22. Wilson C. T. R. The electric field of a thundercloud and some of its effects.  Proc. Phys. Soc. London.  37, P. 32D—P. 37D (1925).