Instrumentation development for perspective space researches

1Korepanov, VYe., 1Lukeniuk, АА, 1Pronenko, VO, 1Dudkin, FL, Marusenkov, AA, 1Shеndеruk, SG
1L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(2):15–26
https://doi.org/10.15407/knit2015.02.015
Section: Space Devices Designing
Publication Language: Ukrainian
Abstract: 

The ways of decreasing the flux-gate magnetometer temperature zero drift are studied. A new method to decrease the drift by creating a special configuration of measured magnetic field compensation field is proposed. The principle of the functional diagram of the system for scientific information processing and collection (SSIC) building for nano-satellites is designed. High-speed interface for data transfer from SSIC to radio line is developed. A large amount of data from microsatellite “Chibis M” and experiment “Variant” on board the satellite “Sich-1M”, which were registered by onboard instruments manufactured in LC ISR, are processed. An emission from power lines at the frequency of 50 (60) Hz and Schumann resonances modes which are penetrating to the ionosphere above the F2 layer were observed in these experiments

Keywords: data processing, flux-gate magnetometer, ODHS, radiation, Schumann resonances
References: 

1.  Afanasenko M.P., Berkman R.Ja. Analysis of the measured flux gate in a nonuniform magnetic field. Geofiz. apparatura, N 38, 32—43 (1968) [in Russian].

2. Berkman R. Ja. On the effect of highest even harmonics in an excitation circuits of magnetic modulators.  Avtomatika i telemehanika, 26 (2), 384—387 (1965) [in Russian].

3. Vavrukh M., Korepanov V.  Power lines harmonic radiation in ionosphere formation.  Visnyk of the Lviv University. Series Physics,  Issue 48, 180—198 (2013) [in Ukrainian].

4. Gluhov V. S., Lukenjuk A. A., Shenderuk S. G. Unified interface of onboard spacecraft systems. Space Project “Ionosat-Micro”,  P.126—133 (Academperiodika, Kyiv, 2013) [in Russian].

5. Pevzner E. M., Petrov E. A., Reznik Je. E. A method for constructing and calculating the compensator constant magnetic fields. Geofiz. apparatura, Issue 38, 25—29 (1968) [in Russian].

6.  Afanas'ev Ju.V., Studencov N.V., Horev V.N.  et al. The measuring technique of magnetic field parameters (Sredstva izmerenij parametrov magnitnogo polja), 320 p. (Jenergija, Leningrad, 1979) [in Russian].

7. Janus R.I.  On the theory of flux-gate magnetometer for inhomogeneous magnetic fields. Fiz. metallov i metallovedenie. 14 (3), 366—373 (1962) [in Russian].

8. Dudkin D., Pilipenko V., Korepanov V., et al.  Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatelite. J. Atmos. and Sol.-Terr. Phys. N 117, 81—87 (2014).

9. Dudkin F., Korepanov V., Lizunov G. Experiment VARI-ANT — first results from Wave Probe instrument.  Adv. Space Res. 43(12), 1904—1909 (2009).

10. Korepanov V., Berkman R., Bondaruk B. Advanced flux-gate magnetometer with low drift.  Proceedings of XIV IMEKO Word Congress “New measurements — challenges and visions”  Vol. IVA, Topic 4, 121—126 (Tampere, Finland, 1997).

11. Nemec F., Santolic O., Parrot M., Berthelier J.J. Power line harmonic radiation: A systematic study using DEMETER spacecraft.  Adv. Space Res. 40, 398—403 (2007).

12. Primdahl F. Temperature compensation of fluxgate magnetometers.  IEEE Trans. Magn. 6 (4), 819—822 (1970).

13. Ripka P. Magnetic Sensors and Magnetometers.  514 p. (Artech House, Boston, 2001).

14. Space engineering. Space Wire-Links, nodes, routers and networks. ECSS Secretariat ESA- ESTEC Requirements & Standards Division.  ECSS-E-50-12A. ESA Publications. (Noordwijk, The Netherlands, 24 January 2003).