Development of robust methods of precision attitude control of small spacecrafts and their implementation at the problem-oriented processors

1Kuntsevich, VM, 2Palagin, OV, 3Gubarev, VF, 3Babii, NА, 3Volosov, VV, 2Lisovyi, OM, 3Melnychuk, SV, 2Opanasenko, VM, 4Shevchenko, VM
1Space Research Institute of the National Academy of Sciences of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine
2V. M. Glushkov Institute of Cybernetics of the National Academy of Science of Ukraine, Kyiv, Ukraine
3Space Research Institute of the National Academy of Science of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine
4Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(1):03–09
https://doi.org/10.15407/knit2015.01.003
Publication Language: Russian
Abstract: 

The work is devoted to the adaptation of robust ellipsoidal state estimation methods for dynamic systems to the changes of attitude control of small spacecrafts. Software and hardware implementation of these methods at the problem-oriented processors in FPGAs element basis is established. Its effectiveness is illustrated by the example of the attitude control system of small spacecraft, when a three-axis magnetometer is using as a measuring device.

Keywords: attitude control, ellipsoid method, problem oriented processor, small spacecraft
References: 

1. Abalakin V. K., Aksenov E. P., Grebenikov E. A. et al. Reference book on the celestial mechanics and astrodynamics. 864 p. (Nauka, Moscow, 1976) [in Russian].

2. Branec V. N., Shmyglevskij I. P. The use of quaternions in problems of solid-state orientation. 320 p. (Nauka, Moscow, 1976.) [in Russian].

3. Vittenburg J. The dynamics of systems of solids (Dinamika sistem tverdyh tel). 292 p. (Mir, Moscow, 1990) [in Russian].

4. Volosov V.V., Tyutyunnik L.I. Synthesis of spacecraft attitude control algorithms using quaternions. Kosm. nauka tehnol.,  5 (4), 61—69 (1999) [in Russian].
https://doi.org/10.15407/knit1999.04.061

5. Volosov V.V., Tjutjunnik L.I. Robust algorithms of the ellipsoidal state estimation of continuous and discrete non-stationary dynamical systems with time-dependent uncontrolled disturbances and interference in the measurement channels. Cybernetics and Computer techn., Issue 135, 3—8 (2002) [in Russian].

6. Volosov V. V., Hlebnikov M. V., Shevchenko V. N. Precision control algorithm of the spacecraft’s orientation by the action of uncontrolled indignation.  Journal of Automation and Information Sciences, No.2, 114—121 (2011) [in Russian].

7. Kovalenko A. P. Magnetic control systems for space vehicles (Magnitnye sistemy upravlenija kosmicheskimi letatel'nymi apparatami), 248 p. (Mashinostroenie, Moscow, 1975) [in Russian].

8. Makridenko L. A., Volkov S. N., Hodnenko V. P., Zolotoj S. A. Conceptual questions of creation and application of small satellites.  Problems of Electrotechnique, 114, 15—26 (2010) [in Russian].

9. Opanasenko V. N., Lisovyj A. N. On-board problem-oriented processors for hardware implementation of the spacecraft control algorithms.  Problemy informatyzacii' ta upravlinnja: Zb. nauk. prac' NAU, Issue 3 (47), 71—75, (2014) [in Russian].

10. Opanasenko V. N., Lisovyj A. N., Shevchenko V. M. Methods and algorithms for robust control of the small satellites and their implementation on the FPGA base.  Computer systems and net technologies (CSNT-2014):  Abstracts of VIІ Intern. sci.-tech. confer., Kyiv, 17—19 April 2014, P. 164 (NAU, Kyiv, 2014) [in Russian].

11. Palagin A. V., Opanasenko V. N., Kryvyi S. L. Method for Synthesis of Structures for Transformations of a Cyclic Code Based on Programmed by the User of Valve Matrix.  Electronic Modeling, 36 (2), 27—48, (2014) [in Russian].

12. Sevast'janov N. N., Branec V. N., Panchenko V. A. et al. Analysis of the current capabilities of small satellites for a remote sensing.  Tr. Mosk. fiz-tehn. in-ta, 1 (3), 14—22 (2009) [in Russian].

13. Sollogub A. V., Skobelev P. O., Simonova E. V. et al. Intelligent System for Distributed Problem Solving in Cluster of Small Satellites for Earth Remote Sensing. Inform.-uprav. sistemy, No. 1(62), 16—26 (2013) [in Russian].

14. Kondratenko Y. P., Gordienko E. Implementation of the neural networks for adaptive control system on FPGA. Prooceeding of 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation, 23(1), 389—392 (2012).

15. Opanasenko V. N., Kryvyi S. L. Direct problem of synthesis of adaptive logical networks. Int. J. Inform. Technol. and Knowledge, 8 (1), 3—12 (2014).

16. Palagin A. V., Opanasenko V. N. Design and application of the PLD-based reconfigurable devices. Des. Digit. Syst. and Devices, 79, 59—91 (Springer-Verlag, Berlin; Heidelberg, 2011).

17. Palagin A., Opanasenko V., Krivoi S. The structure of FPGA-based cyclic-code converters.  Opt. Memory and Neural Networks (Information Optics) 22(4), 207—216.

18. Schmidt S. F. The Kalman filter: its recognition and development for aerospace applications.  J. Guidance and Control, 4(1), 4—7 (1981).
https://doi.org/10.2514/3.19713