The use of methods of the nonlinear spatial-temporal data regularization for the analysis of meteorological observations

1Kostyuchenko, Yu.V, 2Bilous, Yu.H, 3Movchan, DM, 2Kopachevsky, IM, 4Yushchenko, MV, 2Artemenko, IG, 5Popadyuk, LV
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
3State institution «Scientific Centre for Aerospace Research of the Earth” of the Institute of Geological Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
5State institution «Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine», Kyiv
Kosm. nauka tehnol. 2013, 19 ;(5):42–49
https://doi.org/10.15407/knit2013.05.042
Section: Space and Atmospheric Physics
Publication Language: Ukrainian
Abstract: 

On the basis of an analysis of investigated parameters, a method for statistical analysis of observations (including archive data and observations from different sources) is proposed. The resulted distributions are presented in units invariant toward the initial data metrics. For deriving distributions of meteorological measurements, which are regular in space and time, at a regional scale, the algorithm based on the Kernel Principal Component Analysis (KPCA) is proposed. The results of the analysis of climate parameters regional distributions (multiyear meteorological measurements) are compared with known conventional re-analysis models (NCEP/NCAR). Some spatial and temporal features of climate parameter change are defined at the regional scale. Our results are analyzed in comparison with changes of vegetation productivity and greenhouse gases (CO2), derived from remote sensing data. It should be mentioned that the proposed method gives more correct estimations of regional risk parameters and security.

Keywords: disaster, greenhouse gases, satellite data, the climate parameter change
References: 

1. Kostyuchenko Yu.V.,Kopachevskyi I.M.,Solovyov D.M., et al. Application of satellite observations for assessment of regional hydrological and hydrogeological risks. Kosm. nauka tehnol., 17 (6), 19—29 (2011) [in Ukrainian].
https://doi.org/10.15407/knit2011.06.019

2. Kostyuchenko Yu.V., Movchan D.M., Yuschenko M.V. Assessment of the safety areas according to the statistical analysis of distributions emergencies. Integrated modeling of food, energy and water security management for sustainable social, economic and environmental developments, Ed. by A.G.Zagorodny, Yu.M.Yermoliev. P. 54—63 (Kyiv, 2013) [in Ukrainian].

3. Lyalko V.I., Movchan D.M., Kostyuchenko Yu.V., Kopachevsky I.M. Parameters control of regional vegetation dynamics by remote sensing to improve long-term management effectiveness of hydrological and hydrogeological risks. Geoinformatika, 1(41), 50—56 (2012) [in Ukrainian].

4. Adger W. N. Vulnerability. Global Environ. Change. 16(3), 268—281 (2006).
https://doi.org/10.1016/j.gloenvcha.2006.02.006

5. Christianini N., Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. 212 p. (University Press, Cambridge, UK, 2000).
https://doi.org/10.1017/CBO9780511801389

6. Cowpertwait P. S. P. A generalized spatial-temporal model of rainfall based on a clustered point process. Proc. Roy. Soc. London A. 450, 163—175 (1995).
https://doi.org/10.1098/rspa.1995.0077

7. Fowler H. J., Kilsby C. G., O’Connell P. E. Modeling the impacts of climatic change and variability on the reliability, resilience and vulnerability of a water resource system. Water Resour. Res. 39, P. 1222 (2003).
https://doi.org/10.1029/2002WR001778

8. IPCC 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Eds J. T. Houghton, Y. Ding, D. J. Griggs, et al. 881 p. (University Press, Cambridge, 2001).

9. IPCC 2007: Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Eds M. L. Parry, O. F. Canziani, J. P. Palutikof, et al. 976 p. (University Press, Cambridge, 2007).

10. Kalnay E., Kanamitsu M., Kistler R., et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437—470 (1996).
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

11. Kanamitsu M., Ebisuzaki W., Woollen J., et al. NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc. 83, 1631—1643 (2002).
https://doi.org/10.1175/BAMS-83-11-1631

12. Lee J.-M., Yoo C. K., Choi S. W., et al. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59, 223—234 (2004).
https://doi.org/10.1016/j.ces.2003.09.012

13. Lloyd C. D. Local models for spatial analysis. 244 p. (CRC Press, Taylor & Francis Group, 2007) (ISBN 0-415-31681-2).

14. Mika S., Scheolkopf B., Smola A. J., et al. Kernel PCA and de-noising in feature spaces. Adv. Neural Inform. Process. Syst. 11, 536–542 (1999).

15. Mudelsee M., Burngen M., Tetzlaff G. On the estimation of trends in the frequency of extreme weather and climate events. Wiss. Mitt. Meteorol. Inst. Univ. Leipzig, Eds A.Raabe, K.Arnold, 22, 78—88 (2001).

16. National Research Council. America’s Climate Choices: Adapting to the impacts of climate change, 292 p. (National Academies Press, Washington, DC, 2010).

17. Romdhani S., Gong S., Psarrou A. A multi-view nonlinear active shape model using kernel PCA. Proceedings of BMVC. P.483—492 (UK, 1999).
https://doi.org/10.5244/c.13.48

18. Scheolkopf B., Smola A. J., Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299—1399 (1998).
https://doi.org/10.1162/089976698300017467

19. Villez K., Ruiz M., Sin G., et al. Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes. Water Science & Technology. 57(10), 1659—1666 (2008).
https://doi.org/10.2166/wst.2008.143