Acoustic and gravity components of wave disturbances in the high-latitude thermosphere

1Fedorenko, AK
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(3):27–36
https://doi.org/10.15407/knit2013.03.027
Section: Space and Atmospheric Physics
Publication Language: Russian
Abstract: 

The contribution of the pressure gradient (acoustic component) and gravity (gravity component) to the wave variations of parameters of high-latitude thermosphere was investigated with the use of measurements from the low-orbit satellite Dynamic Explorer 2. It was found that the wave disturbances which are systematically dominated in the polar region at altitudes of 250—400 km have acoustic and gravitational components with close magnitude and spectral characteristics. The obtained ratio of acoustic and gravitational parts reveals a peculiar energy balance of these waves.

Keywords: high-latitude thermosphere, wave variations of parameters
References: 
1. Gossard E. E., Hooke W. H. Waves in the  Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian].
2. Dikij L. A. The theory of the Earth's atmosphere vibrations [Teorija kolebanij zemnoj atmosfery], 196 p. (Gidrometeoizdat, Leningrad, 1969) [in Russian].
3. Fedorenko A. K. Satellite observations of middlescale acoustic gravity waves above the polar caps,  Kosm. nauka tehnol., 14 (5), 65—73 (2008) [in Russian].
https://doi.org/10.15407/knit2008.05.065
4. Fedorenko A.K. Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements, Geomagnetism and Aeronomy, 50 (1), 111—122 (2010) [in Russian].
https://doi.org/10.1134/s0016793210010123
5. Carignan G. R., Block B. P., Maurer J. C., et al. The neutral mass Spectrometer on Dynamics Explorer,  Space Sci. Instrum., 5, 429—441 (1981).
6. Del Genio A. D., Schubert G., Straus J. M. Gravity wave propagation in a diffusively separated atmosphere with height-dependent collision frequencies, J. Geophys. Res., 84 (A8), 4371—4378 (1979).
https://doi.org/10.1029/JA084iA08p04371
7. Dudis J. J., Reber C. A. Composition effects in thermospheric gravity waves, Geophys. Res. Lett., 3 (12), 727—730 (1976).
https://doi.org/10.1029/GL003i012p00727
8. Hines C. O. Internal atmospheric gravity waves at ionospheric heights,  Can. J. Phys., 38, 1441— 1481 (1960).
https://doi.org/10.1139/p60-150
9. Innis J. L., Conde M. Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data,  J. Geophys. Res.107(A12) (2002). 
https://doi.org/10.1029/2002JA009370
10. Johnson F. S., Hanson W. B., Hodges R. R., et al. Gravity waves near 300 km over the polar caps,  J. Geophys. Res., 100, 23993—24002 (1995).
https://doi.org/10.1029/95JA02858
11. Makhlouf U. R., Dewan E. A., Isler J., Tuan T. F. On the importance of the purely gravitationally induced density, pressure and temperature variations in gravity waves: Their application to airglow observations,  J. Geophys. Res., 95, 4103—4111 (1990).
https://doi.org/10.1029/JA095iA04p04103
12. Spencer N. W., Wharton L. E., Niemann H. B., et al. The Dynamics Explorer wind and temperature spectrometer,  Space Sci. Instrum.,   5, 417—428 (1981).
13. Yeh K. S., Liu C. H. Acoustic-gravity waves in the upper atmosphere,  Rev. Geophys. Space. Phys., 12, 193—216 (1974).